高阻缓冲层与高迁移率GaN基HEMT材料生长研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:mzhouliqun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以GaN为代表的第三代(宽禁带)半导体材料因其禁带宽度大、击穿场强高、热导率高、耐腐蚀和抗辐照等优势,特别是GaN异质结构具有高密度和高迁移率的二维电子气,被誉为是研制微波功率器件的理想材料。近年来,随着外延技术的不断进步,GaN外延材料的结晶质量也逐步提升,加上器件制造工艺的不断成熟,AlGaN/GaN HEMT器件性能不断提高。不过仍然存在一些关键问题制约器件性能与可靠性,如GaN缓冲层漏电问题和最佳异质结构问题。GaN缓冲层漏电直接使得器件的夹断特性变差,器件击穿电压不高,将严重降低器件的功率特性;GaN异质结构参数的优化问题也很严重。它们都与器件工作特性息息相关。本文首先从GaN缓冲层中杂质分布研究出发,分析认为缓冲层漏电可分为两种情况,一种是聚集有极高浓度载流子的掩埋电荷层,另一种是分布在整个GaN缓冲层中的背景载流子。在通过采用优化条件的HT-AlN成核层生长后,实现了将衬底中氧杂质的扩散抑制在了3D成核岛中,并且背景载流子浓度也控制在了1014cm-3量级。然而,GaN基微波功率器件工作时结温一般超过150℃,在这种情况下,GaN材料会本征激发出大量的背景电子,另外,工作在负栅压下的GaN基HEMT器件沟道中二维电子也会大量溢出至GaN缓冲层中,这都会严重影响GaN缓冲层的高阻特性。这时,需要通过适量的Fe掺杂在GaN缓冲层中形成深能级陷阱来束缚住这些背景载流子,以保证GaN基器件在工作时缓冲层仍然为高阻态。其次,本文通过分析GaN材料中存在的多种散射机制对沟道二维电子输运特性的影响,认为在GaN基HEMT器件正常工作的情况下,影响2DEG迁移率的主要散射机制为合金无序散射、界面粗糙度散射以及位错散射。本文中主要从优化常规的AlGaN/GaN异质结构着手来实现更高的沟道2DEG迁移率。通过对AlN插入层、AlGaN势垒层以及GaN帽层的优化,分析沟道2DEG浓度与迁移率的函数关系,来降低由合金无序散射和界面粗糙度散射对迁移率的限制作用,并最终实现器件性能的提升。再次,GaN材料作为一种极性半导体材料,沟道中二维电子与势垒层应变程度直接相关。而GaN外延层中残留大量应力时对器件的长期可靠性是极为不利的,受逆压电效应的作用,存有应力的GaN器件在高偏压工作时容易导致无法修复的损伤。最后,从成本以及材料的利用率来讲,GaN材料必然会向着大直径化的方向发展,通过对自主研发的MOCVD320系统结构的改进,成功的实现了在3、4inch蓝宝石和碳化硅衬底上高质量的GaN薄膜外延,整个外延片也具有较好的均匀性,基于此缓冲层外延的AlGaN/GaN异质结其电特性和均匀性也都能够满足器件制造的需要。
其他文献
随着电子产品的不断更新换代,其系统主频越来越高和产品越来越小型化,在产品电路板设计中的互连线的信号完整性问题对系统性能的影响变得越来越重要。因此在高速数字产品设计
<正> 1959年古巴革命取得胜利,西半球出现了第一个社会主义国家。美国为遏制共产主义在西方世界的&#39;蔓延&#39;、 &#39;消灭古巴革命&#39;,对古巴采取了各种各样的颠覆、和
利用高温淬火相变仪测定了EH40级船板钢晶内铁素体的相变温度区间,又利用高温共聚焦显微镜对晶内针状铁素体的相变析出行为进行了原位观察。结果表明:能得到针状铁素体的最佳
离职是离开现有工作,是具体行为的一种后果,离职意向具有一定的过程性,是离职前的一种心理活动,离职意向的强弱决定了离职行为。当前我国民办幼儿园教师队伍离职意向问题严重
随着器件特征尺寸的减小,传统的微缩技术开始面临来自物理极限的挑战,应变硅技术已成为进一步提高纳米级MOSFET性能的主要途径之一。应变硅技术利用应变诱导硅能带发生变化,
本硕士论文在对碳纳米管基本性质认识的基础上,对碳纳米管场效应管的建模仿真进行了研究,同时对碳纳米管互连和碳纳米管场效应管中的电-热耦合问题进行了理论分析。论文首先
<正> 一、问题的提出吐蕃统治敦煌时期的密教,一直以来都是学术界公认的研究难点,也是近年来学术界关注的热点问题,不少学者都围绕此问题提出了自己的看法,有代表性的观点有:
志向是指主体选择与未来职业活动有关的目标和力图实现这种抱负的决心。在学生中开展深入系统的志向教育具有重要的价值。志向教育有利于加强和改进学生思想道德建设,有利于
吞咽困难是颈椎前路手术术后最常见的并发症之一,其发生率高,对患者生活质量影响较大,是病人随访复查时最常见的不适主诉之一。本文综合近年来国际、国内的相关文献报道,对颈
光纤激光器借以低阈值、高增益、光束质量好、效率高、输出波长多等优点,引起了广大科研工作者的广泛兴趣。2μm波段的激光属于人眼“安全光”,而且在其他领域也有着广泛的应