基于能带匹配的高效无偏压自解水装置中电极结构的构建

来源 :天津大学 | 被引量 : 0次 | 上传用户:zjundu1980
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着世界经济的不断发展,人口的不断壮大,不可再生的化石能源即将消耗殆尽。与此同时二氧化碳和其他温室气体的大量排放可能加剧温室效应和全球气候变化。太阳能取之不尽用之不竭,因其体量大、可持续等优势被认为是最具潜力,能够替代传统化石能源的清洁能源之一。无偏压的光电化学(PEC)水分解反应是一种有望将太阳能直接转换为化学能的方法。TiO2,WO3,BiVO4,Fe2O3等金属氧化物半导体因具备大开路电压,高透光率,低成本以及在水溶液中良好的稳定性,通常作为光电阳极置于串联电池的吸光前侧。但是,当光电阳极与光电阴极以等面积形式串联连接时,由于阳极侧的光电流密度远低于阴极,会带来阴阳极输出功率不匹配的问题,采用多个阳极并联提高阳极侧电流密度可以改善这一问题。本论文综合考虑性能和成本,给出了确定由多个光电阳极和光电阴极组成的串联电池最佳结构的基本计算模型,包括(ⅰ)多光电阳极电流密度(Janode),(ⅱ)单位电流成本(CPC)以及(ⅲ)串联电池输出功率填充因子(FFout)。以Ti O2,Bi VO4,Fe2O3为模型光电阳极构建和修正计算模型并通过实验验证了计算模型的可行性。CPC值最小时的电极结构为最优结构,此时电极能以最少的成本获得更大的Janode。最后用FFout于评估多光电阳极与Si光电阴极的匹配程度。除此之外,有效利用电解池内反射光可以进一步的提升光电极的性能,实现更高的太阳能向氢能的转化效率。
其他文献
腐殖酸——含诸多活性基团的天然有机质混合物,具有各种功能如吸附,络合和离子交换等,与环境中各物质相互作用进而影响生态环境。显然这些活性性质都与其结构密切相关。利用溶剂浸取对腐殖酸进行初步分级,高效液相色谱法实现二次分离,了解其分子结构组成将有助于扩宽并加深其应用。另外,腐殖酸的高含碳量使其可作为制备碳点的含碳前体。本文以污泥堆肥中提取出的腐殖酸为研究对象,开展组分分离和应用研究,主要工作如下:1.
学位
Co3O4作为一种经典的电极材料在超级电容器领域受到了广泛的关注,但导电率低和分散性较差的特点使其在能量密度的提升方面受到了限制。论文通过改变结构和优化制备方法制得Co3O4基电极材料Co3O4@Ni-Co LDH/NF,并应用于超级电容器。(1)利用水热法制备得到了纳米线和纳米片交错的网状结构复合电极材料Co3O4@Ni-Co LDH/NF。通过改变表面活性剂CTAB浓度调控Co3O4@Ni-C
学位
ZnCo2O4因具有高理论比电容和丰富的氧化还原活性位点而在电极材料的制备中备受关注,但其固有的低电导率和低离子扩散速率限制了材料能量密度的提升。为改进其性能,本文将锌钴双金属氧化物与过渡金属硫化物复合制备了核壳结构复合材料,并对沉积时间和电解液组成进行优化,将制得的材料用于超级电容器中以检验实际应用能力。利用水热法和循环伏安电沉积法在泡沫镍上制备了复合材料ZnCo2O4@Co Mn-S,主要研究
学位
可再生能源储存与转化技术的开发和推广是助力全球能源转型的关键。其中,电解水析氢和电化学氧还原是可再生能源储存与转化中的重要反应。因此,开发出催化活性高、稳定性好、储量丰富、价格低廉的非贵金属基催化剂是电化学能源转化中的关键。氮掺杂碳具有优异的电学特性和电化学性能,将其与过渡金属复合形成的双活性中心协同效应使其有望成为高活性、高稳定性的非贵金属基催化剂。本论文围绕氮掺杂碳负载过渡金属复合材料的制备及
学位
本论文从MOFs材料固定化酶的优势及广泛应用出发,针对游离漆酶易受外界环境影响及重复利用性差等问题,以多级孔MOF材料HcP-UiO-66-NH2(30)为固定化载体,成功制备了酶学性能优于游离漆酶的固定化漆酶Lac@HcP-UiO-66-NH2(30);同时将其应用于抗生素污染治理领域,实现盐酸林可霉素和利福平的完全降解,固定化漆酶良好的循环利用性也为漆酶在环境修复领域的实际应用提供参考。具体研
学位
本文通过采用流体体积法(Volume of Fluid,VOF)和离散元模型(Discrete Element Method,DEM)的耦合方法,湍流模型选用雷诺应力模型(RSM),对水力旋流器中的气液固三相流进行了数值模拟研究。VOF用来计算流体相含率,DEM则用来追踪离散的固体颗粒的运动状态。通过网格无关性验证选取了2+1mm的网格尺寸组合,通过局部加密溢流出口和底流出口段的网格使得数值模拟的
学位
近年来,随着人类对石油能源的需求增加以及轻质油储量的不断减少,稠油的开采迫在眉睫。然而,由于稠油中含有大量的沥青质、胶质,以及一些脂肪烃类,稠油表现出高黏度和低流动性的特征。所以,在稠油的开采过程中选用合适的降黏剂来降低稠油黏度尤为重要。随着计算机运算能力的提高和分子模拟技术的发展,分子模拟是一种在分子层面对降黏剂的结构进行设计的有效手段。从分子层面揭示降黏剂的作用机理也减少了实验的经济成本和时间
学位
非均相催化活化过一硫酸盐(PMS)产生的强氧化性硫酸根自由基(SO4·-),能够有效降解有机污染物。其中,钴基催化剂的研究较为广泛,但仍然存在一些尚待解决的问题:(1)催化剂中的Co容易浸出到水体中,造成环境污染;(2)催化剂中Co(II)/Co(III)氧化还原对的循环速率限制了催化剂的活性;(3)粉体非均相催化剂难于分离回收,残留在水体中的催化剂容易造成二次污染。针对以上问题,本论文选用晶体结
学位
球形聚结技术可以在一个单元操作中耦合结晶和造粒两个过程,可制备高性能的球形晶体产品,在制药、食品等领域的高端产品制造方面具有广阔应用前景。本文针对目前球形聚结技术机理研究不充分、过程设计复杂和产品粒度粒形控制困难等问题,提出一种晶体聚结成球的设计策略,验证了策略的有效性和普适性,并应用该策略实现高质量塞来昔布(Celecoxib,CXB)球晶产品的设计与开发。首先,本文开发了一种晶体聚结成球设计策
学位
电化学还原二氧化碳(CO2RR)制备高附加值化学品和燃料被认为是解决环境和能源问题的有效方法。然而,由于CO2RR涉及到多个质子电子转移过程和C-C耦合反应,因此选择性地将CO2还原为高能量密度的C2+产物仍具有较大的挑战。基于顺序催化机理,本研究分别制备了两种Au修饰的Cu2O催化剂(AuxCu2O、AuxCu2O-Ⅰ),通过提高*CO关键中间体的生成和停留时间,加速C-C耦合反应的进行,从而有
学位