Au修饰Cu2O纳米复合物高效电催化还原CO2制备乙烯

来源 :天津大学 | 被引量 : 0次 | 上传用户:liongliong489
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电化学还原二氧化碳(CO2RR)制备高附加值化学品和燃料被认为是解决环境和能源问题的有效方法。然而,由于CO2RR涉及到多个质子电子转移过程和C-C耦合反应,因此选择性地将CO2还原为高能量密度的C2+产物仍具有较大的挑战。基于顺序催化机理,本研究分别制备了两种Au修饰的Cu2O催化剂(AuxCu2O、AuxCu2O-Ⅰ),通过提高*CO关键中间体的生成和停留时间,加速C-C耦合反应的进行,从而有效促进乙烯(C2H4)的生成。首先采用液相还原法制备尺寸为150~180 nm的实心Cu2O立方体,利用电置换反应和线性伏安扫描(LSV)预还原处理,成功制备出AuxCu2O复合电催化剂。Cu2O和AuxCu2O表面均形成Cu+和Cu~0共存状态,并且Au纳米颗粒的引入有利于提高Cu2O稳定性。CO2RR性能测试结果表明:与Cu2O相比,AuxCu2O复合电催化剂对CO和C2H4的选择性明显增强。其中,在相比于可逆氢电极-1.3V电位下(-1.3 V vs.RHE),Au0.02Cu2O的C2H4法拉第效率(FE)最优,达到24.4%,分别是另外两种AuxCu2O和纯Cu2O的2~2.5倍和5倍。这说明优化的Au/Cu原子比是实现Au和Cu2O高效顺序催化,促进C-C耦合反应的必要条件。此外,在高电位下深度预还原得到的Au0.02Cu2O(HPR-Au0.02Cu2O)上C2H4法拉第效率仅为LSV预还原Au0.02Cu2O的一半,表明Cu+和Cu~0混合活性位点间的协同作用可以促进C-C耦合反应进行,进一步促进C2H4的生成。对实心Cu2O立方体进行酸蚀刻成功制备出疏松多孔结构Cu2O(Cu2O-Ⅰ),随后采用电置换反应和LSV预还原处理成功制备出多孔AuxCu2O(AuxCu2O-Ⅰ)复合电催化剂。CO2RR性能测试结果表明:相比于Cu2O和破碎结构Cu2O(Cu2O-Ⅱ),Cu2O-Ⅰ催化剂显著提高对CO和C2H4选择性。此外,在-1.1 V vs.RHE电位下,AuxCu2O-Ⅰ对C2H4的选择性均可达到6.0%,并且在-1.3 V vs.RHE电位下,Au0.01Cu2O-Ⅰ复合电催化剂对C2H4的选择性可达到22.0%,说明AuxCu2O-Ⅰ对C2H4具有更小的生成起始电位和更高的选择性。以上结果表明优化的Au/Cu原子比可以为催化剂表面提供较高的CO浓度,而疏松多孔的结构可以延长*CO中间体的停留时间,有利于促进C2H4的生成。
其他文献
精喹禾灵作为一种安全性好,杂草选择性高的高效除草剂,在农业等领域具有广阔的应用前景。目前,工业上主要采用在乙醇-水溶液中冷却结晶的方式对精喹禾灵进行纯化,但单次重结晶后纯度仅能达到95.0%。主要原因一是目前使用的溶剂选择性不够,二是晶体粒度小,形貌差导致后续分离过程困难,从而影响产品纯度。寻求合适的溶剂体系并开发一种能调控精喹禾灵晶体形貌的工艺是工业中亟待解决的问题。针对上述问题,本文从精喹禾灵
学位
腐殖酸——含诸多活性基团的天然有机质混合物,具有各种功能如吸附,络合和离子交换等,与环境中各物质相互作用进而影响生态环境。显然这些活性性质都与其结构密切相关。利用溶剂浸取对腐殖酸进行初步分级,高效液相色谱法实现二次分离,了解其分子结构组成将有助于扩宽并加深其应用。另外,腐殖酸的高含碳量使其可作为制备碳点的含碳前体。本文以污泥堆肥中提取出的腐殖酸为研究对象,开展组分分离和应用研究,主要工作如下:1.
学位
Co3O4作为一种经典的电极材料在超级电容器领域受到了广泛的关注,但导电率低和分散性较差的特点使其在能量密度的提升方面受到了限制。论文通过改变结构和优化制备方法制得Co3O4基电极材料Co3O4@Ni-Co LDH/NF,并应用于超级电容器。(1)利用水热法制备得到了纳米线和纳米片交错的网状结构复合电极材料Co3O4@Ni-Co LDH/NF。通过改变表面活性剂CTAB浓度调控Co3O4@Ni-C
学位
ZnCo2O4因具有高理论比电容和丰富的氧化还原活性位点而在电极材料的制备中备受关注,但其固有的低电导率和低离子扩散速率限制了材料能量密度的提升。为改进其性能,本文将锌钴双金属氧化物与过渡金属硫化物复合制备了核壳结构复合材料,并对沉积时间和电解液组成进行优化,将制得的材料用于超级电容器中以检验实际应用能力。利用水热法和循环伏安电沉积法在泡沫镍上制备了复合材料ZnCo2O4@Co Mn-S,主要研究
学位
可再生能源储存与转化技术的开发和推广是助力全球能源转型的关键。其中,电解水析氢和电化学氧还原是可再生能源储存与转化中的重要反应。因此,开发出催化活性高、稳定性好、储量丰富、价格低廉的非贵金属基催化剂是电化学能源转化中的关键。氮掺杂碳具有优异的电学特性和电化学性能,将其与过渡金属复合形成的双活性中心协同效应使其有望成为高活性、高稳定性的非贵金属基催化剂。本论文围绕氮掺杂碳负载过渡金属复合材料的制备及
学位
本论文从MOFs材料固定化酶的优势及广泛应用出发,针对游离漆酶易受外界环境影响及重复利用性差等问题,以多级孔MOF材料HcP-UiO-66-NH2(30)为固定化载体,成功制备了酶学性能优于游离漆酶的固定化漆酶Lac@HcP-UiO-66-NH2(30);同时将其应用于抗生素污染治理领域,实现盐酸林可霉素和利福平的完全降解,固定化漆酶良好的循环利用性也为漆酶在环境修复领域的实际应用提供参考。具体研
学位
本文通过采用流体体积法(Volume of Fluid,VOF)和离散元模型(Discrete Element Method,DEM)的耦合方法,湍流模型选用雷诺应力模型(RSM),对水力旋流器中的气液固三相流进行了数值模拟研究。VOF用来计算流体相含率,DEM则用来追踪离散的固体颗粒的运动状态。通过网格无关性验证选取了2+1mm的网格尺寸组合,通过局部加密溢流出口和底流出口段的网格使得数值模拟的
学位
近年来,随着人类对石油能源的需求增加以及轻质油储量的不断减少,稠油的开采迫在眉睫。然而,由于稠油中含有大量的沥青质、胶质,以及一些脂肪烃类,稠油表现出高黏度和低流动性的特征。所以,在稠油的开采过程中选用合适的降黏剂来降低稠油黏度尤为重要。随着计算机运算能力的提高和分子模拟技术的发展,分子模拟是一种在分子层面对降黏剂的结构进行设计的有效手段。从分子层面揭示降黏剂的作用机理也减少了实验的经济成本和时间
学位
非均相催化活化过一硫酸盐(PMS)产生的强氧化性硫酸根自由基(SO4·-),能够有效降解有机污染物。其中,钴基催化剂的研究较为广泛,但仍然存在一些尚待解决的问题:(1)催化剂中的Co容易浸出到水体中,造成环境污染;(2)催化剂中Co(II)/Co(III)氧化还原对的循环速率限制了催化剂的活性;(3)粉体非均相催化剂难于分离回收,残留在水体中的催化剂容易造成二次污染。针对以上问题,本论文选用晶体结
学位
球形聚结技术可以在一个单元操作中耦合结晶和造粒两个过程,可制备高性能的球形晶体产品,在制药、食品等领域的高端产品制造方面具有广阔应用前景。本文针对目前球形聚结技术机理研究不充分、过程设计复杂和产品粒度粒形控制困难等问题,提出一种晶体聚结成球的设计策略,验证了策略的有效性和普适性,并应用该策略实现高质量塞来昔布(Celecoxib,CXB)球晶产品的设计与开发。首先,本文开发了一种晶体聚结成球设计策
学位