中压直挂式充电系统前级整流器高性能控制技术研究

来源 :山东大学 | 被引量 : 0次 | 上传用户:liongliong486
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对于面对环境污染和油气短缺的我国,发展电动汽车意义重大。动力电池是电动汽车的能量来源,快速、安全的直流充电系统,是电动汽车推广应用必不可少的基础设施。传统直流充电系统采用的380V配电是通过工频变压器对6kV~35kV中压电进行降压后得到的二次配电,电压经过多级变换,能量损失严重,而且工频变压器体积庞大、成本高,越来越难以满足电力电子装备高效率、高功率密度等需求。近年来,中压直挂式充电系统作为一种中压一次配电方案得到了国内外充电市场广泛的关注和重视,其输入端直挂中压电力系统中,无需工频变压器,具有输出功率大、转换效率高、变配电成本低、多充电端口输出等突出优点,已成为未来快速充电技术的重要发展方向。经过调研,本文采用了“级联整流器+高频隔离DC/DC变换器”两级拓扑结构的10kV中压直挂式充电系统。其中,前级整流器不仅要和中压配电直接交互,也要给后级输出一个稳定的直流电压,是系统的核心与关键。级联NPC整流器由于其耐压能力强的优点被广泛采用为级联拓扑。然而,其相关技术和理论仍未完善,仍存在开关损耗大、交流侧电能质量差、负载扰动下电压失稳等难题。针对以上问题,本文以级联NPC整流器为研究对象,提出了高性能调制和控制策略,实现了系统的“高效率、高抗扰、快响应”等性能要求,主要研究成果如下:首先,介绍了 NPC整流器的工作原理和级联系统结构,分别基于单模块拓扑和级联多模块拓扑推导了开关函数描述的一般数学模型;基于瞬时功率理论,进一步推导了它们在两相动态dq坐标系下的数学模型。其次,针对功率传输效率低和网侧谐波污染的问题,提出了一种基于权重因子的高效混合空间矢量调制方法(Weight Factor Based Hybird SVPWM,WFBH-SVPWM)。WFBH-SVPWM精确计算电网电流纹波峰值,基于权重因子划分作用区间,缓解了级联NPC整流器低功率损耗和高电能质量相互掣肘的难题,为中压直挂式充电系统绿色可靠用电提供了理论指导和技术支撑。再次,针对负载扰动下电压失稳、动态响应不及时的问题,提出了一种基于命令滤波的反步控制策略(Command Filter Backstepping Control,CFBC)。通过引入新型命令滤波器,实现了对电流参考信号导数的快速精准估计,降低了控制器运算负担。所提控制策略实现了系统参数扰动下级联NPC整流器输出快响应、高抗扰稳定控制。最后,搭建了基于Simulink的仿真模型和基于dSPACE软硬件工作平台的6kW实验平台,通过仿真和实验证明了本文所提控制策略和调制方法的有效性和可行性。
其他文献
研究背景视神经脊髓炎谱系疾病(neuromyelitis optica spectrum disorders,NMOSD)是一种位于中枢神经系统的原发性脱髓鞘疾病,它以体液免疫为主、细胞免疫为辅,其临床特征表现为长节段横贯性脊髓炎(longitudinally extensive transverse myelitis,LETM)及视神经炎(optic neuritis,ON)。NMOSD的病理改
学位
研究背景严重精神障碍是精神分裂症、偏执性精神障碍、双向情感障碍、癫痫所致精神障碍、分裂情感性精神障碍和精神发育迟滞伴发精神障碍这六种疾病的统称。目前国内患者约有一千六百万,在我国所有的疾病负担中排名首位,占比约20%。严重精神障碍不仅是重要的公共卫生问题,还是复杂的社会问题,给患者和社会都带来了巨大的经济和精神负担。研究表明,严重精神障碍在地理层面上存在地区聚集性,但目前尚缺乏对小地域尺度的空间分
学位
研究背景在气候变化、极端天气频繁的环境背景下,环境温度与湿度所致的不良健康问题已成为重要的公共卫生问题。大量流行病学证据显示,不适宜的环境温度与湿度可能导致心血管系统疾病、呼吸系统疾病及死亡率升高等不良健康结局。低出生体重(low birth weight,LBW)是常见的不良妊娠结局之一,其与子代在儿童期和成年期疾病的发生和发展密切相关。在低出生体重的众多危险因素中,孕期不良环境因素的暴露是近年
学位
胰腺癌(pancreatic cancer,PC)是一种高度致命的恶性肿瘤,五年生存率小于6%,被称作“癌症之王”。只有20%的患者在确诊时可接受手术治疗。无法手术治疗的患者主要依赖化疗,但药物选择少且副作用严重。肿瘤免疫治疗为多种癌症治疗提供了希望。FDA已经批准针免疫检查点抑制剂、单克隆抗体、CAR-T(chimeric antigen receptor T)细胞疗法等免疫治疗手段,并成功应用
学位
流感是一种由流感病毒引起的急性呼吸道传染病,具有高致病率、高突变率和高致死率的特点,严重威胁人类的健康和生命。近年来,随着新冠疫情和高致病性禽流感的不断出现,新冠病毒和流感病毒的双重感染,导致患者的重症及死亡风险大大增加,这使得人们对未来可能发生的流感大流行更加担忧。神经氨酸酶抑制剂(neuraminidase inhibitors,NAIs)一直是许多国家防治流感的一线药物,但它们存在的耐药性、
学位
黄酮类化合物在植物中广泛分布,对植物的生长发育和抵抗非生物胁迫具有重要作用,而且具有多种药理活性。在黄酮类化合物生物合成途径中,黄酮合酶Ⅰ(Flavone synthase Ⅰ,FNS Ⅰ)催化黄烷酮生成黄酮,黄烷酮-3-羟化酶(Flavanone 3β-hydroxylase,F3H)催化黄烷酮C3位羟基化,生成的二氢黄酮醇作为底物参与黄酮醇和花色素的合成。FNS I和F3H均属于2-酮戊二酸/
学位
为了解决能源短缺以及接踵而来的生态环境破坏等问题,能源利用效率的提升是核心措施之一,也就意味着清洁能源的充分利用以及分布式供能系统的发展至关重要。综合能源系统(integrated energy system,IES)作为实现能源互联网多能互补特性的重要载体,在能源领域集成了冷、热、电等各种表现方式,不仅有效升级了清洁能源消纳率,还有效降低了温室气体排放并达成了能量梯级利用,是一种极具发展潜力的系
学位
肿瘤严重危害人类健康,开发新型抗肿瘤药物一直是药学工作者的研究重点之一。作为广泛发生于肿瘤中的现象,表观遗传对于恶性肿瘤异质性的形成和维持具有极其关键的作用,利用表观遗传靶点防止或抑制表观遗传调节的失衡成为了现今解决恶性肿瘤问题的一个新途径。作为表观遗传学的重要读取器,溴结构域和末端结构域(BET)蛋白家族在肿瘤的发生中发挥着重要作用。BRD4(bromodomain-containing pro
学位
在能源短缺和环境恶化的双重制约下,为了实现节能环保目标,电动汽车得到了前所未有的发展。锂离子电池因具有能量密度高、循环寿命长和绿色环保等诸多优势被广泛应用于电动汽车,装机量也随势快速上涨。随着使用时间的增加,锂离子电池逐渐老化,当不再满足电动汽车运行的性能要求时,需要被更换以确保车辆运行的安全性和可靠性。随着电动汽车的飞速发展,退役电池的数量也迅速增长,大规模退役电池的回收利用已成为一个极具挑战性
学位
抗生素耐药性是一个持续存在的全球性问题,己被描述为21世纪公共卫生的主要威胁。特别是己被世界卫生组织(WHO)列为抗生素耐药重点病原体清单中的革兰氏阴性细菌引起的感染,严重威胁到了人类的生命健康。因此,迫切需要具有新型作用机制的抗菌药物来解决细菌多药耐药性的问题。AcrAB-TolC外排系统具有广泛的底物特异性,能够排出包括抗生素在内的多种化合物以及在结构和活性方面表现出重大差异的天然产物。抗生素
学位