基于亚波长介质光栅的多层薄膜Fano共振传感特性研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:xcn1980
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
亚波长介质光栅因其独特的光学特性,可将介质薄膜光学、波导光学和衍射光学结合设计新颖的亚波长光学元器件,具有高品质因数(Figure of merit,FOM)和结构多样性等优点,在光学传感设计领域有广阔的应用前景。基于对亚波长介质光栅的结构特性和Fano共振形成机制的研究,将其与多层介质薄膜结合,设计基于Fano共振的亚波长介质光栅传感结构,利用有限元法(Finite element method,FEM)对其共振模式和传感特性进行探讨,实现基于亚波长介质光栅的多层薄膜传感结构的逐步优化和改进,论文的主要研究内容包括:首先,基于亚波长介质光栅的衍射特性和表面等离极化激元(Surface plasmon polaritons,SPPs)的光学传输特性,设计了一种亚波长介质光栅/金属Ag薄膜/周期性光子晶体复合结构,详细阐述了该结构Fano共振的形成机理和传输特性,分析了结构参数与Fano共振光谱曲线之间的关系,优化了传感结构模型,为基于亚波长介质光栅的多层薄膜传感结构的研究提供理论指导。其次,基于亚波长波导光栅的共振特性和周期性光子晶体的光子局域特性,设计了一种基于角度调制的亚波长波导光栅全电介质多层薄膜复合结构,利用全电介质材料的光学特性在角度范围内获得了具有高反射率和高FOM值的Fano共振光谱曲线。接着,通过改变入射方式和结构参量来打破亚波长波导光栅传播约束条件的局限性,设计了一种基于波长调制的亚波长波导光栅全电介质多层薄膜复合结构,进一步在波长范围内实现对待测样本折射率的动态检测,扩充了检测分析方法。最后,设计了一种基于波长调制的变周期亚波长波导光栅全电介质多层薄膜复合结构,利用变周期亚波长波导光栅的结构特性,可在不同波长区间内形成导模共振(Guided mode resonance,GMR),提供双离散态缺陷峰,进而获得具有高反射率和高FOM值的双重Fano共振光谱曲线。根据亚波长波导光栅的弱调制条件设置双传感检测区域,建立基于双重Fano共振的传感模型,实现对不同待测样本折射率区间的多变量检测和扩宽了传感检测区间。
其他文献
光子晶体光纤(Photonic Crystal Fibers,PCF)一直以来在光纤通信传感领域中都是一个重点研究的课题。近年来,越来越多的研究者采用PCF基底与金属纳米线结合的方式,通过激发局域表面等离子体共振(Localized Surface Plasmon Resonance,LSPR)来达到检测目的。对耦合器件而言,最初研究的结构具有体积大、成本高、产生SPR现象较困难等缺点。目前,新型
近些年来,受自然生物学研究的启发以及计算机通信、嵌入式等技术的快速发展,各领域学者对多智能体系统展开了广泛的研究。多智能体系统可通过子系统间的信息交互去协作完成单个系统无法完成的复杂任务,具备高效率、高容错性、可扩展性等优势。在实际应用中,受限于网络带宽和信道,多智能体系统子系统信息交互的过程中会存在一定的通信时延。基于Lyapunov稳定性理论,本文主要研究一类具有输入时滞的下三角多智能体系统分
在钢铁冷轧生产过程中,轧制力的预报精度决定着最终成品的厚度及板形的平整度。准确的轧制力预报有助于缩短带材的头尾长度,提高成材率。由于轧制环境复杂多变,各参量间相互耦合,难以建立准确的数学模型。传统的轧制力机理模型为简化推导过程,引入较多假设,无法保证最终预测精度。为提高冷轧机组的轧制力预报精度,依据轧制基本理论,基于深度学习方法建立轧制力模型,进行轧制力预报建模研究。以轧制力机理模型Bland-F
脑卒中患者80%以上患有手部运动功能障碍,针对不同康复阶段的患者手部运动能力也各不相同,所以不同康复阶段的手部功能障碍患者的康复需求也各不相同。现有手部康复训练系统,通过场景交互或康复机器人辅助等方式对手部功能障碍患者进行康复训练,但是只适用于某一康复阶段的手部功能障碍患者,无法满足手部运动功能障碍患者康复训练的不同时期,并且康复训练过程缺乏主动性、康复效率较低,无法满足不同时期患者的康复训练需求
室内场景语义理解任务中,三维点云语义分割是实现室内场景理解的重要基础,广泛应用于室内智能3D环境感知领域。随着深度学习技术在该领域研究的不断深入,运用深度学习解决以点云语义分割为代表的点云场景理解任务的研究成为热点。但由于原始点云属于非结构化数据,非结构化数据固有稀疏性和无序性,使得传统卷积神经网络无法通过常规卷积运算实现点云特征的有效提取。最初研究人员试图将稀疏离散的点云整体转化为空间排布规则的
水泥烧成系统是水泥生产关键子系统之一,随着工业技术的发展,水泥烧成系统装备技术得到了显著提升。但智能化设备的普及并没有带来配套的优化方法的提高,导致我国水泥制造业仍面临资源利用率低,产品质量差,排废量大等问题,主要原因包括:一、水泥工业具有设备多、生产机理复杂等特征,导致难以建立有效的机理模型;二、水泥工业数据为多干扰不确定多元信息,工况的动态变化造成工艺工程师难以感知动态变化的工况。因此,研究水
能源消耗问题是制约水泥行业发展的关键所在,水泥磨系统是水泥生产的关键生产过程,对水泥粉磨过程中耗电量的关键参数进行优化可以为水泥生产过程中的节能降耗提供依据。水泥粉磨过程能耗主体为电耗,水泥磨生产过程是一个时变、连续且各个过程变量之间相互耦合的过程,水泥粉磨过程中电力消耗容易受到设备运行情况、原料波动及过程变量的变化等因素的影响,难以通过分析水泥磨运行机理建立精准的数学模型对电耗进行控制。本课题旨
表面等离子体共振能够实现对介质表面环境折射率微小的变化检测,其原理是倏逝波和表面等离子体波之间的相位匹配。但传统的SPR传感器只具备较低的灵敏度,因此设计一种高灵敏度的SPR生物传感器十分有必要。随着石墨烯等二维材料的出现将表面等离子体共振技术带入一个新的时代,传感器的灵敏度较之以前有了很大的提高。故基于二维材料设计了三种SPR生物传感器。采用黑磷作为表面等离子共振的增敏层,提出了一种基于黑磷的超
以贵金属复合纳米粒子局域表面等离子体共振特性为基础的光传感技术在制作生物光传感器、加速光热催化等生物医药学领域潜力巨大。本文为构建新型LSPR纳米复合结构粒子以及“贵金属纳米消光式传感检测”提供了新的传感模型和传感理论依据,主要研究工作包括:首先,在表面等离子体共振理论和经典纳米粒子理论模型的基础上,选用了离散偶极近似计算法结合仿真软件DDSCAT对文中纳米粒子结构局域表面等离子体共振的产生及粒子
双目立体视觉通过模拟人类双目理解目标对象的深度信息,在智能手机、自动驾驶、智能机器人等领域具有广泛应用。现如今深度学习技术表现出强大的图像理解能力,可直接从立体图像对提取鲁棒的深度特征表示,性能远超基于手工设置的传统算法。然而在实际应用中,对于复杂纹理区域,基于深度学习的立体匹配技术仍可能出现错误估计,导致局部细节特征残缺、对象边缘不清晰等问题。针对上述问题,本文主要研究基于深度学习的立体匹配算法