论文部分内容阅读
电芬顿(electro-Fenton,EF)因以电能为驱动力,通过阴极氧还原反应(ORR)原位产H2O2,继而诱发·OH产生,具有氧化效率高、绿色、可控等优势,成为高效处理难降解有机污染物的新技术。然而EF中阴极2电子ORR反应活性/选择性低,导致H2O2积累量有限。同时酸性工作条件(pH≈3)严重制约电芬顿技术氧化效能的提高及实际工程应用。本研究采用三聚磷酸钠(3-TPP)为电解质,利用植物基生物炭修饰泡沫镍制备BC@Ni-Foam阴极,建立以酚类和磺胺噻唑(STZ)为目标降解污染物的电芬顿体系,旨在实现电芬顿宽pH范围内工作、阴极高H2O2积累量,并解析电芬顿体系强化有机污染物降解效能及作用机制。在以3-TPP为电解质的电芬顿体系中,通过响应面法建立苯酚降解率与影响因素(pH、Fe2+、电流)之间的多项式模型。经过方差验证该模型是有效、合理的。通过多项式函数模型推导及pH范围考察可知:3-TPP可将电芬顿最适pH从3左右提高至5.83。同时3-TPP的使用能够保证电芬顿体系在pH=3-8范围内均有良好的氧化效能。通过紫外可见分光光度法证实了:3-TPP拓宽电芬顿pH工作范围的机制是3-TPP含氧配合物与铁离子以“Fe-O”配位形成可溶解性Fe2+-3-TPP配合物,保证了pH=3-8时Fe2+以离子状态稳定存在于溶液中。以3-TPP为电解质的电芬顿体系对苯酚降解的一级反应速率常数(2.01×10-1min-1)是传统Na2SO4电解质(pH=3,6.34×10-2 min-1)的3.17倍,证明了3-TPP能够强化电芬顿的氧化效能。氧化能力的提高得益于Fe2+-3-TPP配合物能够活化分子氧,遵循O2→O2·-→H2O2→·OH路径强化·OH产生。通过荧光分光光度法和电子自旋共振间接捕获法,证实了其他多聚磷酸配体,如四聚磷酸钠(4-TPP)、焦磷酸钠(2-PP)及Na3PO4遵循与3-TPP类似的机制。其产·OH的能力顺序如下:[4-TPP]>[3-TPP]>[2-PP]≈[Na3PO4]。以含氮生物质为多孔生物炭前驱体,采用两步低温热解法制备氮自掺杂、含氧官能团的生物炭,将其修饰到三维骨架泡沫镍(Ni-Foam)上,制备BC@Ni-Foam阴极。通过TGA-DSC、SEM-EDS、BET、XPS、RDE等手段表征可知:热解温度为500oC、700o C、900o C时,生物质比表面积分别为6.00 m2g-1、69.00 m2 g-1、71.40 m2 g-1。低温热解(500o C)更有利于生物炭表面含氧(–C=O、C–O–C)/氮官能团的保存及亲水性能的提高。在热解温度分别为500oC、700o C、900o C时,H2O2积累量为1154.42μmol L-1、1000.00μmol L-1、891.00μmol L-1。BC@Ni-Foam阴极H2O2积累量比Ni-Foam阴极提高了12.38倍,电流效率提高至70.41%,而原始Ni-Foam阴极电流效率仅为5.22%。生物炭引入Ni-Foam阴极强化H2O2积累的机制:其一,生物炭引入提高了BC@Ni-Foam阴极ORR反应活性,界面电荷传质阻力由原始的95.7Ω降低至7.18Ω;其二,低温热解生物炭表面含氧官能团(–C=O、C–O–C)提高了阴极2电子ORR选择性,RDE实验验证了电压为-0.5 V时,其ORR反应转移电子数为2.3;其三,当3-TPP与BC@Ni-Foam阴极联合使用时,3-TPP存在将BC@Ni-Foam阴极H2O2积累量提高了37%,因3-TPP能够抑制H2O2体相及电化学无效分解作用,使3-TPP兼具H2O2稳定剂作用。以3-TPP和BC@Ni-Foam阴极的电芬顿体系,对实际焦化废水的降解,其最优条件为:Fe/3-TPP=3/10、pH=6.80、电流=300 mA及Cl-=2745 mg L-1。在该优化条件下,焦化废水3 h内的矿化率可达81.28%,高于传统电芬顿体系(55%)。电芬顿降解焦化废水能耗为0.13 kWh(g TOC)-1。针对STZ降解研究可知,在电解3 h时,电芬顿体系可以实现STZ 100%的降解,6 h内矿化率高达90%。根据UPLC/MS/MS结果推测STZ降解的可能途径,STZ降解以羟基化为主,然后断裂S-N键,继而开环形成小分子有机酸及无机阴阳离子,直至完全矿化。通过海洋细菌V.fischeri发光率来评估STZ电芬顿降解过程毒性变化,表明STZ降解过程生物毒性先增加后降低。本研究通过3-TPP电解质的应用及BC@Ni-Foam阴极制备,为解决电芬顿体系pH工作范围窄、阴极H2O2积累量低的问题提供一种新思路与借鉴。为难降解有机污染物的高效去除开发了一种新技术。