新时代农村党员干部党史学习教育制度建设研究

来源 :广西师范大学 | 被引量 : 0次 | 上传用户:dahinter11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
党史学习教育是中国共产党在不同时期推进自我革命的法宝。进入新时代,党史学习教育被提到一个新的高度,习近平总书记更是针对党史学习教育提出一系列的相关要求,呈现出系统布局、深层推进的态势。2021年12月,在党史学习教育总结会上,习近平总书记强调建立党史学习教育常态化长效化制度机制。2022年,习近平总书记在党的二十大报告中将“在全党开展党史学习教育”作为过去五年党在新征程上牢记初心使命、开创美好未来的重大成就之一,并将学习“党的历史”、推进“党史学习教育常态化制度化”以写进党章的形式予以高度重视,为新时代写好党史学习教育“后半篇文章”指明了具体方向。基层就是基础,党史学习教育亦是基层党组织开展相关工作的基础,对于坚定农村党员干部的理想信念和提高执政能力、执政水平至关重要。有鉴于此,农村党员干部党史学习教育制度建设情况尤为值得关注,其制度建设情况的优劣直接影响党史学习教育开展成效高低和农村党员干部执政能力和执政水平。如何实现新时代农村党员干部党史学习教育制度化,成为理论界和实践界亟待破解的重大课题。本文以马克思主义经典作家历史教育和制度建设思想、中国共产党历届领导人的党史学习教育制度建设思想,尤其是以习近平总书记关于党史学习教育制度建设的重要论述为指导,借鉴新制度主义的制度变迁理论展开深入研究,并以QZ市B镇为研究样本,试图以小见大,由点及面探析新时代农村党员干部党史学习教育制度建设现实样态。经过实证调研和科学分析,研究发现:B镇对农村党员干部党史学习教育制度建设进行积极的探索,坚持“深学”“实做”“力行”促进党史学习教育的规范化、常规化和实效化,并且取得了一定成效,建立起部分党史学习教育有关的制度机制。与此同时,农村党员干部制度建设也陷入了制度设计缺乏整体规划、制度执行效果不佳、制度体系有待完善的多重困境。基于此,本文从村级党组织、农村党员干部和党史学习教育制度本身三个方面分析现存问题的成因,并从强化农村党员干部制度意识、完善党史学习教育制度设计和健全监督保障体系提出新时代农村党员干部党史学习教育制度的优化策略,最终为实现农村基层党组织党史学习教育制度化注入强大动能。
其他文献
作为下一次科技革命潜在的发起点,量子信息领域的发展有望为人类带来全新的科技进步和产业升级,也是各国竞相争夺的前沿科技高地。然而无论是量子计算、量子精密测量还是量子保密通信任务,在进一步的发展中都会遇到难以突破的环境退相干瓶颈。本质原因在于,物理体系都不是绝对封闭的,任何量子力学系统都应当被视为总是与周围环境耦合的开放系统。封闭系统下的量子信息处理方案往往是空中阁楼,一旦应用于实际任务,量子优势在环
学位
锂金属作为一种电池负极材料,理论比容量(3860 mAh g-1)是石墨电极(372 mA h g-1)的十倍,因此具有极其广阔的应用前景。然而在实际应用中却存在一系列的问题阻碍了其进一步的发展,主要包括以下三个方面:(1)锂金属在循环过程中的形貌趋于多孔化和枝晶化,进一步加剧了和电解液的副反应,最终电极会造成严重的粉化;(2)由于锂金属具有极高的金属活泼性和最低的氧化还原电位(-3.04Vvs
学位
眩晕诱发因素多种多样,分为特异性和非特异性两大类,影响眩晕的发生、发展及康复。本文荟萃分析相关文献,并结合诊疗实践中的经验和体会,对眩晕诱发因素进行分类介绍并提出应对策略,以期提高眩晕疾病的防治及诊疗水平。
期刊
<正>原发性高血压(essential hypertension, EH)是一种以体循环动脉血压持续升高为临床表现的常见病、多发病,可导致心、肾等多种重要靶器官功能损害,危及人类健康。作为最常见的心脑血管病,其患病率正逐年升高[1]。最新数据表明[2],高血压正逐渐成为危害我国居民健康的第一疾病,据估算我国已有约2.45亿人患有高血压[2-3]。
期刊
毫米波大规模天线系统是实现超高速率无线通信的关键技术之一。随着系统规模的不断增加及结构的日益复杂,系统中出现硬件故障的可能性显著增加,对系统性能造成严重影响。因此,需要故障诊断技术对故障器件进行检测与定位,进而通过校正补偿系统性能。在本论文中,我们针对毫米波通信系统的无线环境和连接结构特点,对大规模天线系统的硬件故障诊断方法进行研究。我们首先从经典的天线阵列故障诊断出发,设计一种无需信道状态信息(
学位
聚酯材料因其原材料来源广泛且绿色可持续,同时具有良好的可降解性能而备受关注。随着石油资源的消耗以及对环境产生的巨大污染,聚酯材料的研究以及使用引起了学术界以及工业界的广泛重视。虽然聚酯材料的合成方法很多,但是通过发展新催化剂以及单体的种类来制备新型聚酯材料的研究变得越来越具有挑战性。因此,开发新型的调控策略用于聚酯材料的合成尤为重要。本论文中,在聚酯材料的合成过程中,我们通过引入新型调控手段从而制
学位
随着创新药物研发进程的不断加深,常规药物靶点的开发已趋于饱和。这对新药研发造成了巨大的阻碍,导致一些疾病已经出现了无药可用的困境。常规的膜蛋白药物靶点主要集中在胞内区、胞外区或膜蛋白内腔,而跨膜域因为通常具有结构不明确和高度疏水等特点,普遍被认为是难以成药的。为了扩充新的药物靶点,本论文将关注点集中在极具挑战性的跨膜结构域蛋白-蛋白相互作用界面上。潜伏膜蛋白1(LMP-1)作为Epstein-Ba
学位
抗生素耐药性正以不同的速度在全球蔓延,对人类健康造成了巨大的威胁,探寻新的抗生素是抗击抗生素耐药性的关键策略之一。不同于抗生素作用于特定靶标,抗菌肽通过非特异性破膜进行杀菌,因此不易诱导耐药性的产生。作为一类抗菌肽模拟物,聚赖氨酸基抗菌剂因其广谱的抗菌活性而受到关注,它们主要包括ε-聚赖氨酸(ε-PL)、α-聚赖氨酸(α-PL)和超支化聚赖氨酸(HPL)等,然而它们各自也存在诸多问题或不足:ε-聚
学位
有机太阳能电池具有可溶液加工、大面积、质量轻、易实现柔性、半透明的特点,是一种应用前景广阔的光伏技术。在过去几年里,电子受体材料的开发,使有机太阳能电池在能量转换效率方面取得了重大突破。另一方面,稳定性以及环境友好加工、低成本等因素,仍然是限制有机太阳能电池商业化应用的瓶颈。新型电子受体的开发,是解决这些问题的有效途径。本论文围绕新型电子受体材料的开发作为核心主题,在传统的A-D-A’-D-A型小
学位
随着科技的进步与发展,聚烯烃材料的需求越来越大,而不同拓扑结构的聚合物则与催化剂的结构息息相关。从早期的Ziegler-Natta催化剂、茂金属催化剂,到后面的非茂金属催化剂和后过渡金属催化剂,聚烯烃工业革命的突破都离不开新催化剂结构的设计。配位聚合的核心仍然是催化剂的结构。本论文主要聚焦于两类经典的后过渡金属催化剂体系(α-二亚胺镍钯体系和水杨醛亚胺镍体系),通过改变催化剂的配体结构来探究在烯烃
学位