气井用泡排-防聚一体剂应用基础研究

来源 :西安石油大学 | 被引量 : 0次 | 上传用户:atmip
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在气井开采生产过程中,井底积液与井筒水合物堵塞是气井安全高效生产所面临的技术难题,已成为制约气井产量的瓶颈问题。目前使用泡排剂与水合物防聚剂分别是解决井底积液与水合物堵塞的重要手段。但是泡排剂普遍存在稳定性差、泡沫携液量小等缺陷。基于泡排剂与水合物防聚剂具有相近表面活性剂结构的原理,本文优选出表面活性剂及其复配体系,对其发泡及水合物防聚性能进行评价,结合理论分析,得到兼具泡排和水合物防聚双功能的表面活性剂复配体系。研究内容与结果概括如下:
  (1)对十六烷基三甲基氯化铵(CTAC)、椰油酰胺丙基甜菜碱(CAB)等表面活性剂进行了复配,得到了泡排-防聚一体剂(TCJ)二元体系,配方为:0.05%CTAC+0.7%CAB。TCJ体系在室温条件下静置24h后无沉降、分层现象,说明TCJ体系稳定性较好。使用高速搅拌器测得该配方初始泡沫体积可达415mL,半衰期为5.5min。通过罗氏泡沫仪测得TCJ体系在50℃时的初始泡沫高度为14.6cm,25min后,泡沫高度仍保持在10.5cm,说明体系耐温性能较好。TCJ体系在温度为65℃时的携液量为125mL,携液率为62.5%。甲醇加入量为15%时,初始泡沫高度仍能达到12.8cm。当NaCl加量为12.5%时,初始泡沫体积可达到410mL,半衰期为6.9min。TCJ体系与聚乙烯吡咯烷酮(PVP)的配伍性良好,并且能够延长半衰期。采用自行组装的水合物微观形貌观测装置观察水合物,发现在TCJ体系中20%四氢呋喃(THF)所形成的水合物明显很松散且生成量少。通过测定并比较加入TCJ体系前后20%THF的DSC曲线,可以发现,加入TCJ体系后水合物的相变点由4.32℃下降到了2.12℃,相变点的降低说明了一体剂具有热力学抑制剂的特点,可在一定程度上抑制水合物的生成。
  (2)对十六烷基三甲基氯化铵(CTAC)、十二烷基二甲基甜菜碱(BS-12)、脂肪醇聚氧乙烯醚硫酸钠(AES)等表面活性剂进行了复配,得到了泡排-防聚一体剂(TSE)三元体系,配方为:0.05%CTAC+0.9%BS-12+0.4%AES。TSE体系在室温条件下静置24h后无沉降、分层现象,说明TSE体系稳定性较好。使用高速搅拌器测得该配方初始泡沫体积可达到565mL,半衰期为7.8min。通过罗氏泡沫仪测得在70℃下,初始泡沫高度也可达到21.5cm。TSE体系在温度为65℃时携液量为155mL,携液率为77.5%。当甲醇加量为15%时,初始泡沫高度仍能达到17.5cm。NaCl、CaCl2加量分别为12.5%时,初始泡沫体积分别达到560mL、565mL。TSE体系与聚乙烯吡咯烷酮(PVP)的配伍性良好,并且能够延长半衰期。采用自行组装的水合物微观形貌观测装置观察水合物,发现TSE体系中20%四氢呋喃(THF)所形成的水合物明显很松散且生成量少,说明了一体剂可抑制水合物的聚集和生成。通过测定并比较加入TSE体系前后20%THF的DSC曲线,可以发现,加入防聚剂后水合物的相变点由4.32℃下降到1.35℃,相变点的降低说明了一体剂具有热力学抑制剂的特点,可在一定程度上抑制水合物的生成。与二元TCJ体系相比较,三元TSE体系的泡沫性能及防聚效果更好。
  (3)对十六烷基三甲基氯化铵(CTAC)、烷基酚聚氧乙烯醚(OP-10)、十二烷基硫酸钠(SDS)等表面活性剂进行了复配,得到了泡排-防聚一体剂(TPS)三元体系,配方为:0.05%CTAC+0.5%OP-10+0.02%SDS。TPS体系在室温条件下静置24h后无沉降、分层现象,说明TPS体系稳定性较好。使用高速搅拌器测得该配方初始泡沫体积可达到540mL,半衰期为7.5min。通过罗氏泡沫仪测得在70℃时,初始泡沫高度也可达到17.4cm。TPS体系在温度为65℃时的携液量为145mL,携液率为72.5%。当甲醇加量为15%时,初始泡沫高度仍能达到13.8cm。TPS体系与聚乙烯吡咯烷酮(PVP)的配伍性良好,并且能够延长半衰期。采用自行组装的水合物微观形貌观测装置观察水合物,发现在TPS体系中20%四氢呋喃(THF)所形成的水合物明显很松散且生成量少,说明了一体剂可抑制水合物的聚集和生成。通过测定并比较加入TPS体系前后20%四氢呋喃(THF)的DSC曲线,可以发现,加入防聚剂后水合物的相变点由4.32℃下降到0.92℃,相变点的降低说明了一体剂具有热力学抑制剂的特点,可在一定程度上抑制水合物的生成。
  综上,可以得出配方二即TSE体系泡沫性能最好,配方三即TPS体系的泡沫性能稍差,但体系的防聚效果最好。考虑到经济成本,配方三更适于现场应用。因此,配方三即TPS体系适合进行现场应用试验。
其他文献
本文首先以环氧氯丙烷、二乙烯三胺、三乙烯四胺和多乙烯多胺等为原料合成了环氧氯丙烷/多乙烯多胺缩聚物系列粘土稳定剂(ETP);用氯乙酸分别与二乙烯三胺、三乙烯四胺和多乙烯多胺等反应得到了羧甲基多乙烯多胺系列粘土稳定剂(CTP)。以合成ETP、CTP粘土稳定剂的防膨率为评价指标,通过单因素实验和正交实验考察了反应物的物质的量配比、反应时间和反应温度对合成产物防膨性能的影响,得到了合成ETP、CTP粘土稳定剂的优化合成条件。参照“SY/T 5970-2016,油气田压裂酸化及注
学位
聚烯烃由于其优异的物理、化学性能而被广泛用于汽车制造、医疗器械、食品包装、管材建筑等各个行业,在社会上的需求也不断增加。目前,我国聚烯烃行业主要生产低端均聚产物,高端聚烯烃产品大多依赖进口。因此,开发具有高性能的聚烯烃产品成为该领域的研究重点。聚烯烃产品的研发主要依赖催化剂的创新,Schiff碱金属配合物因其合成方法简单,且在温和反应条件下有较高的催化活性,以及催化剂的可修饰性而备受人们青睐。基于
随着社会工业化进程的不断深入,大气中二氧化碳浓度不断上升,导致温室效应和一系列自然灾害。但同时,二氧化碳(CO_2)也是一种廉价、无毒、丰富、可再生的C1资源。因此,将CO_2转化为高附加值的能源,材料和化学产品,实现其资源化利用受到了广泛关注。其中,CO_2与环氧化物交替共聚制备可生物降解的聚碳酸酯(PPC)被认为是最具潜力的绿色聚合工艺之一。CO_2是一种高度稳定和低反应性的分子,因此,开发高
学位
含油污泥是石油开采、炼制、储运和使用等过程中形成的固体废弃物,其组成复杂,含有一定量的原油、重金属、盐类和苯系物等有毒有害物质,处理难度极大,未经处理随意排放会造成严重的环境污染。目前含油污泥的处理技术包括热洗、热解、生物处理、焚烧等,经过这些方式处理后仍会有大量残渣产生,对其进行有效处理是油气田环境保护关注的重要难题之一。本文以《危险废物鉴别标准浸出毒性鉴别》(GB5085.3-2007)中的规
学位
传统石油基润滑油添加剂不可再生性和对环境的不利影响,迫切需要从可再生资源中开发出新型的润滑油添加剂。作为非食用性能源植物,蓖麻油具有可再生、润滑性、低毒性等优点,因此在代替传统石油基能源方面具有巨大的潜力。本研究以蓖麻油(Castor oil,CO)为原料,偶氮二异丁腈(Azodiisobutyronitrile,AIBN)为引发剂,甲苯为溶剂,分别与甲基丙烯酸甲酯(Methyl methacry
学位
石油作为生活中不可或缺的资源,从开采到使用过程中会产生大量的含油污泥,其中包含大量毒害物质,尤其是含油污泥中重金属,会对人体健康和环境产生严重危害。因此,本研究从含油污泥中重金属元素定量分析和危险性预估的需求出发,建立基于激光诱导击穿光谱技术(LIBS)结合化学计量学的含油污泥重金属快速定量分析以及潜在环境风险预估方法,实现对含油污泥中重金属精准快速检测,为含油污泥区域重金属的环境污染预警与防治提
学位
石油开采、储运、炼制等各方面都会产生含油污泥,其成分十分复杂。如果只采用单一的机械分离方法处理污泥,难以达到预计的处理效果。因芬顿反应具有反应快、应用范围广等优势,在污水处理等领域受到广泛关注。但芬顿反应只能在强酸性条件下表现出较强性能,且反应后易产生大量铁泥等限制其工业中应用。基于此,本文开发出中性条件下具有高催化性能的非均相类芬顿催化体系,将其应用于含油污泥破乳研究,实现含油污泥的“资源化、无
学位
随着社会信息爆炸式的增长,人们对于信息存储容量有了更高的要求,存储信息设备正向着小型化、高速度、大容量的方向发展。单离子磁体由于其在高密度信息存储、自旋量子器件及量子比特等方面有潜在用途,成为物理、化学和材料等领域的研究热点。此外,稀土离子在紫外到近红外区域内可以发射强的锐线光谱,可以用来构筑用于发光传感的稀土配合物。本文利用氧化膦配体与羧酸类配体合成了八个结构新颖的稀土配合物,并对它们的磁性及荧
废弃钻井泥浆是钻井过程中的主要污染物,其中含有高的CODCr、BOD、油类、盐类、悬浮物及一些重金属离子等。若不进行有效处理而直接外排,将会对井场周围环境造成严重的污染,制约着油气田开发与环境保护的可持续发展。多年来,已建立的废弃钻井泥浆的处理包括直接排放法、坑内密封法、注入安全地层或井的环形空间、MTC技术、固化处理法、化学固液分离法、焚烧法、土地耕作法、微生物法等。由于存在适用范围窄、处理成本
我国稠油资源丰富,但稠油粘度高、凝点高,对其开采作业造成困难,因此研发高效的开采技术成为提高采收率的重要手段。目前稠油开采技术研究较多,其中蒸汽吞吐技术应用最广,稠油乳化降粘效果较好,但这些技术采出油含水率都较高,特别是蒸汽吞吐技术水含量一般在30%左右,且难以脱水,待温度下降稠油粘度仍居高不下。目前稠油水热裂解技术成为稠油开采技术研发热点,其通过化学反应从根本上降低稠油粘度,应用前景广阔。本文主
学位