基于多目标遗传算法的屏蔽泵叶轮水力性能优化研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:rtreterter
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自机械泵广泛应用以来,人们在处理泵体轴封与泄漏的问题上,曾投入巨大资本但成效甚微。直至屏蔽泵技术被提出,其以效率置换零泄漏的特点而备受关注。然而高能量损耗不仅会降低机组效率,亦会引发扬程不足导致电机烧毁或结构震动损坏等问题,造成重大安全隐患与经济损失。本文通过自主搭建的优化平台提出两种叶片优化方案,并基于数值模拟深入研究优化前后方案外特性与内流场的改善情况。(1)考虑屏蔽泵冷却管路对实际流动的影响,本文基于自主搭建的Isight-Work Bench联合优化平台,以转轮盖板、叶片厚度及骨线参数为变量,将额定效率与扬程同时作为优化目标,通过40组敏感性分析确定出高相关度的参数作为最终优化设计变量。利用优化拉丁方试验法生成110套样本组合,并采用误差最低的Kriging构建代理模型。选择非支配排序遗传算法对代理模型迭代寻优,依据不同权重分配给出两套叶片优化方案。(2)对比优化前后屏蔽泵外特性及内流场结果以证明优化策略的合理性。方案α与β分别提升额定效率1.98%与2.83%,提升扬程15.73m、13.39m,且运行区间外特性皆有改善。研究表明,拓宽前盖板轮廓可削弱由流道窄小而引发的流动不稳定现象,回转区流体与叶片几何线型贴合良好,转轮入口吸力面侧的流动分离情况有所改善。从能量损失角度分析,额定工况下壁面熵产占主导,叶片优化方案主要通过抑制近壁面低压回流涡来降低总熵产损失,转轮域欧拉扬程得到显著提升,且叶片尾缘对液流的控制能力增强。在吸力面载荷分布更均匀的同时,转轮抗气蚀性能得到提升。(3)针对优化前后三套方案提出非定常数值模拟策略,选取额定工况点探究高幅值压力脉动成因与传播规律。研究表明,叶片周期性转动产生的影响会逆流向传播至吸水室,且高速水流由于截面扩张而形成大量回流涡引发无规律低频脉动。转轮吸力面的压力脉动幅值低于压力面,叶片与蜗壳隔舌相互作用产生的动静干涉引起干涉波叠加,在转轮出口形成特征频率3fn与2fn。两优化方案在转轮下游及蜗壳流域的流动稳定性改善显著,方案α叶道内流体与叶片几何线型贴合效果最优。
其他文献
目前,全球温室效应严峻,各国已形成碳中和的共识,中国也提出了“碳达峰、碳中和”的目标。本文综合现有的氨法捕碳与废弃物稻壳利用的技术优势,基于新型氨法捕碳过程产物NH4HCO3的综合利用和农业废弃物稻壳的快速消纳制备出高值化炭-硅产品。利用稻壳制备稻壳源生物炭材料,并结合材料的理化结构分析揭示稻壳源生物炭制备过程中的溶硅和活化机理;根据纳米白炭黑的制备实验考察该技术路线制备纳米白炭黑的可行性,并在反
学位
迄今,细菌感染仍然是人类健康的巨大威胁之一,抗生素的滥用导致超级细菌的出现,因此开发新型高效的抗菌药物迫在眉睫。与传统抗生素不同,纳米酶有良好的膜通透性和生物相容性,不太会引起细菌的耐药性。基于其丰富的表面金属原子比,几种贵金属基纳米酶(如金、银、铂和钯)显示出优异的催化活性,所以被广泛应用于生物医学领域,如生物传感、癌症检测或治疗、神经保护、去除污染物和抗菌剂中。其中,钯纳米粒子(Pd-NPs)
学位
随着多喷嘴冲击式水轮机向高水头、大容量与大比转速方向发展,新型材料的使用导致水轮机刚度降低,由高速射流与旋转诱发的结构振动与共振、水斗表面损坏和水斗整体断裂失效十分常见,影响机组的安全稳定运行。目前对冲击式水轮机转轮结构的研究主要集中在静力学分析与模态分析上,针对瞬态动力学特性的研究相对极少,且研究手段多为模型试验,因此如何在设计阶段根据机组实际运行工况有效预测结构的动力学响应、提高机组的运行稳定
学位
生物医用聚合物材料在使用过程中通常会产生难以察觉的裂纹损伤,导致材料的性能和使用寿命下降并会产生隐患。本征型自修复材料能利用结构中的动态交联键实现自修复。因可实现受损后的多次修复,该类型的修复材料受到研究者们越来越多的关注。聚合物的自修复主要依赖分子水平的物理或化学作用以及两者共同的作用来实现。在聚合单体中引入特别的功能基团(如巯基、氨基、羧基等)可以为材料提供动态的化学交联键,使聚合物具有自修复
学位
催化气化技术具有反应温度低、反应过程热效率高的特点,近年来得到了广泛的研究。金属催化剂一直是催化气化研究的热点,目前所研究的金属催化剂主要包括碱金属催化剂、碱土金属催化剂和过渡金属催化剂。二元金属催化剂共同参与催化气化反应时会产生协同促进作用,表现出比单金属催化更好的性能。但有关于金属催化剂协同作用的影响因素与潜在机理还需要进一步探讨。基于此,本文选取可能具备不同催化机理的过渡金属Fe和碱金属Na
学位
光电化学(PEC)分解水技术可以将太阳能直接转化成氢能,氢能是绿色无污染的清洁能源。因此,目前广泛认为PEC产氢是将太阳能转化为可存储能源最有前途的方式之一。在光电化学分解水装置中,以半导体作为光电极,析氧反应(OER)是整个水分解反应的决速步骤,目前对于阳极半导体材料的改性研究已经有了一定的发展。然而,光阳极的表面和界面结构是如何影响光生载流子行为和光电化学性质的机理还尚不清楚。本论文以BiVO
学位
金属-有机框架(MOFs)因其丰富的配位键和非绝对的晶态有序结构,在光催化领域呈现出广阔的发展前景,但其催化活性受到严重的载流子复合问题的阻碍。为此,人们开发了多种解决策略,包括缺陷工程、助催化剂修饰、形成异质结等。其中,合理设计MOFs及其复合材料有效促进载流子的迁移与分离和创建内置电场作为电荷分离的驱动力呈现出广阔的发展前景。以此为突破口,本文在概述了光催化与压电催化的研究机理,材料组成与特点
学位
多孔材料是热辐射领域中常见的耐高温介质,因其具有低密度、耐腐蚀、制造成本低等优点,在航空航天、武器制造、能源化工等领域均有重要应用。特别是对材料的光谱辐射特性研究,能够提供具体的测量方法,对相关领域的热辐射传输具有重要意义。本文以多孔氧化铝陶瓷泡沫材料为研究对象,针对其光谱辐射特性参数的测量方法展开了研究。采用仿真软件对多孔材料光谱辐射特性测量装置的光热特性进行了仿真设计。该测量装置采用三个氙灯光
学位
面向核热推进的颗粒床反应堆具有高比冲、尺寸小和大推力等优点,在深空探测领域具有较好的应用前景。颗粒床反应堆内部的传热特性显著影响其安全性能。特别地,由于其内部温度可达3000 K以上,热辐射是研究其传热特性时不可忽略的因素之一。当前关于颗粒床反应堆传热的研究主要集中于导热和对流领域,对于热辐射的影响鲜有关注。本文主要对颗粒床反应堆的传热问题进行分析与研究,特别是热辐射效应,为其设计与传热安全特性分
学位
飞行机器人将无人机与机械臂进行结合,可以实现微小型主动作业,具备远程探测、实时监控和情报收集等功能,具有其他无人机无法比拟的科技优势,目前仍处于概念机阶段。本文从保障飞行机器人安全和提高能量利用效率出发,开展满足其运行需求和基本性能指标的混合动力系统设计、运行特性分析和能量管理策略研究。详细工作内容如下:基于飞行机器人运行特性和性能指标,提出采用涡喷发动机和螺旋桨共同产生推力的混合动力系统作为飞行
学位