Banach空间上Weyl型定理及其延伸性质的相关探讨

来源 :福建师范大学 | 被引量 : 1次 | 上传用户:boycant
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Weyl型定理不同角度的研究一直都是泛函分析算子理论的热门课题,具有许多积极意义.多年来众多学者的深入探讨与不懈努力都极大地发展了这一体系.本论文主要是在这一背景下,对Banach空间上Weyl型定理及其延伸性质进行相关探讨.本论文共有三章内容:第一章在Banach空间中定义了一类新算子并通过它来研究Weyl型定理;第二章在Banach空间中对Weyl型定理及其延伸性质的直和问题进行了系统的讨论归纳;第三章在Banach空间中探讨算子系数多项式下的Weyl型定理的直和问题.
其他文献
本学位论文主要运用极小极大定理、山路引理、环绕定理等变分学中的基本方法,讨论一类椭圆方程解的连续性.本文结构如下:绪论,我们将对此类问题的应用背景进行回顾,了解本文所解决问题的实际应用背景.第一章,预备知识,介绍基础知识与重要的基本引理.第二章,讨论(AR)条件在求解椭圆问题中的作用及局限性,以求解椭圆方程一△u+α(x)u=f(x,u),x∈Ω,u|(?)Ω=0弱解的存在性为例,对于满足(AR)
本学位论文利用Abel范畴理论为工具主要关注了k-Abel范畴上的不可分解对象的自同态环,预加范畴上的“类环平凡扩张”和有限性范畴的平凡扩张及其Hall代数.前言全面阐述与本论文有关的研究方向:包括k-Abel范畴、预加范畴上的“类环平凡扩张”及有限性范畴及其Hall代数等的历史背景与发展动态.同时,概述本文的主要工作.第一章主要介绍了Abel范畴的Fitting引理,给出了k-Abel范畴上的不
建党百年,我们站在“两个一百年”奋斗目标的历史交汇点上,既要充满信心,也要居安思危。所以从唯物史观的角度,全面梳理和总结中国共产党领导意识形态建设的百年经验,尤为重要:坚持历史唯物主义,强调意识形态建设满足于社会发展需要;坚持理论和实践相统一,注重党自身建设,不断提升主导自身意识形态体系的建构和发展的能力;坚持意识形态建设和治国理政相结合,党不断增强对非主流意识形态进行积极引导的能力;坚持马克思主
随机游动象集Rn:=#{S0,S1,…,Sn}是随机游动研究中的一个热点问题,本篇论文旨在研究随机游动象集的相关偏差问题并探讨随机游动在统计中的一些相关应用.本文第一章从理论及实际应用两个方面介绍了随机游动的起源背景、历史发展过程、随机游动象集的研究现状.同时包括本文的工作重点及结果.第二章先介绍随机游动的基本概念和相关基础知识,包括单指标随机游动、多指标随机游动、马氏过程和停时等基本概念,继而讨
众所周知,生物数学是一门介于生物学和数学之间的边缘学科.近年来,生物数学的发展十分迅速,其中对捕食一食饵系统的动力学研究一直是许多数学家和生物学家共同关注的重要课题.本文研究三个方面的内容:第一部分研究了一类具有年龄结构和Holling—Tanner Ⅲ类功能反应函数的无穷时滞捕食-食饵系统.利用常微分方程的定性与稳定性理论的基本方法,通过构造辅助系统,借助辅助系统的一些己知的结论,并运用比较原理
广义Comma范畴主要是由两个函子诱导的一类范畴.它不同于Comma范畴与余Comma范畴,而是这两个范畴的真正推广.该类范畴在Artin代数表示论上已有许多很好的应用.对于范畴的阐释除了可以通过刻画其内部的性质,还可以通过刻画其整体的外部的性质.本文通过对广义Comma范畴整体的把握,对其进行外部刻画,从而得出一系列相应的结论.在论文的开头,我们首先介绍了与论文相关的研究方向和发展动态,随后概述
1925年,芬兰数学家R.Nevanlinna建立了包括特征函数,两个基本定理在内的亚纯函数Nevanlinna值分布理论,开辟了复分析中的一个重要方向.而从P.Montel在亚纯函数理论中引入了正规族的概念,正规族便与函数取值问题紧密地联系在一起,形成了值分布理论的一个研究分支.几十年来,正规族理论的研究吸引了国内外许多数学研究工作者.其中,我国数学家熊庆来、杨乐、张广厚、庞学诚、孙道椿、方明亮
本篇硕士学位论文,主要研究了无约束优化问题的一些共轭梯度法的下降性和全局收敛性.本文分为以下四个部分.第一章,简单介绍了非线性共轭梯度法的发展及研究现状,说明了共轭梯度法的重要性,列举了几个重要的非线性共轭梯度法的线搜索技术和几个经典的非线性共轭梯度法.最后,介绍了本文的内容安排.第二章,在文献[27]的启发下,采用Armijo线搜索方式,通过引入一个参数θ(θ∈(0,1))来构造一个新的参数βk
本学位论文研究几类微分方程边值问题解的存在性及解的渐近行为.主要包括:二阶半线性奇摄动边值问题解的存在性及解的渐近行为,分自治、非自治两种情形进行讨论;四阶微分方程两点边值问题与周期边值问题解的存在性等.本学位论文分四章:第一章为绪论.本章给出了奇异摄动研究的一些基本概念,包括奇异摄动与正则摄动、法向双曲条件与稳定性条件等;同时,本章陈述了奇异摄动研究的相关进展及其本文的主要研究工作.第二、三章研
Bazzoni S.和Crivei S.已经对单边正合范畴的同调性质展开了研究,并得到许多漂亮的结果.本文将进一步研究单边正合范畴的局部化范畴、若干同调性质及其对平凡扩张、函子范畴和商范畴的保持问题.本文共分二个部分.第一部分是绪论部分,阐述了单边正合范畴的历史背景及发展动态,第二部分共有四章.第一章,利用范畴局部化的方法,证明在一定条件下,右正合范畴的局部化范畴仍然是右正合范畴.并研究了右正合范