论文部分内容阅读
摘 要:由于商用车多用于长途货运,其驾驶室能否为驾驶员提供较适宜的驾驶环境直接关系人身财产安全,因此,商用车驾驶室品质越发受到关注。商用车驾驶室悬置系统作为驾驶室与车架之间的连接机构,在衰减振动、保证乘员舒适性方面起着不可忽视的作用。
关键词:驾驶室悬置;Adams/Vibration;平顺性;振动特性;隔振
引言
客户反馈某长头卡车在70km/h车速存在前后、上下耦合的共振,平顺性较差。采用测试与Adams/Vibration仿真相结合的方法研究了该车驾驶室悬置的振动特性,发现其“固定”式驾驶室悬置存在5.5Hz共振点导致平顺性异常,并发现采用“半浮”式驾驶室结构具有较好的平顺性。
1、ADAMS驾驶室简化模型
机械系统动力学自动分析软件是美国MDI公司开发的非常著名的虚拟样机分析软件,也是世界上应用最广泛且最具有权威性的机械系统动力学仿真分析软件。驾驶室实体模型的准确性直接决定着后续计算结果的正確与否。在本文中,驾驶室实体建模的主要思路是:(1)模型不要求与实际尺寸一致,重点在于结构的整体性;(2)模型需要考虑存在的各项工作,这个主要是力求降低模型的复杂性,避免为后续分析带来巨大困扰。因此,简化的驾驶室实体建模为:(1)驾驶室所有面件均为面体,着重考虑承重结构;(2)适当忽略诸如驾驶室的小尺寸结构和过渡工艺结构。ADAMS驾驶室模型由带有集中质量的零部件连接在驾驶室安装位置,包括前横梁、纵梁、地板、驾驶室壳体以及确定刚度的连接部件。
2 驾驶室模型的检验
2.1 样车道路试验
创建的驾驶室模型是否接近实车,将直接影响到后续优化设计的有效性,因此,本文借助相关道路试验和仿真对驾驶室模型的准确性加以检验。
本文所选参考车辆为半挂式载重汽车,多行驶在高速公路或一、二级公路上,用于长途运输,根据GB/T 920-2002《公路路面等级与面层类型代码》,高速公路或一、二级公路上均属于高级路面,即路面功率谱密度较小,因此,参考 GB7031-2005《机械振动道路路面谱测量数据报告》中所提供的路面功率谱密度计算公式:
根据GB/T 4970-2009《汽车平顺性试验方法》,让参考车辆在满载状态下分别以 30km/h、40km/h、50km/h、60km/h和 70km/h的速度在 B级路面上匀速直线行驶一段距离,利用单向加速度传感器获取参考车辆悬置系统与车架连接处的垂向振动加速度;同时,利用三向加速度传感器获得驾驶室座椅处的垂向、纵向以及侧向加速度,并计算相应的加速度均方根值。
2.2 驾驶室模型验证将所获参考车辆悬置系统与车架连接处的垂向振动加速度作为激励函数输入到驾驶室模型中进行仿真,获得各车速下的驾驶室座椅上三向振动加速度均方根值。(awy1、awy2、awy3)与试验测得值(a' wy1、a' wy2、a' wy3)相比较。
对比结果表明,三个方向加速度均方根值的仿真结果与试验结果均相近,其中,垂向最大误差为 6.3%,纵向最大误差为4.4%,侧向最大误差为 8.1%,均在合理范围内,说明将驾驶室视作刚体以及部分元件线性化所获得的驾驶室仿真模型基本准确。
3驾驶室悬置系统优化
3.1DOE参数化分析方法
生产实践中,设计人员常根据经验知识,采用试错法或施加强力的方法来探究和优化机械系统的性能。但当面对较为复杂的设计问题时,这些方法往往不能快速地得出系统化公式化的答案。一次改变一个因素(也称设计参数,Factors)不能反映因素之间的相互影响情况,若进行多次仿真同时测试多个不同的因素则会产生大量的输出数据,增加设计人员评估的难度。而DOE作为一种快速有效的分析方法,可以为安排试验和分析试验结果提供一整套步骤和统计工具,大体包括以下五个基本步骤:(1)确定试验目的;(2)为系统选择需要考察的因素集,并设计某种方法来测量系统的响应;(3)确定每个因素的值,在试验中将因素改变来考察对试验的影响;(4)进行试验,并将每次运行的系统性能记录下来;(5)分析在总的性能改变时,哪些因素对系统的影响最大。考虑到本文所采用的四点式驾驶室悬置系统的两个位置的减振器阻尼和螺旋弹簧刚度均可能对驾驶室振动产生影响,即包涵多个因素,因此选用DOE方法对悬置系统参数进行优化。
3.2优化设计方案的确立
3.2.1设计因素及系统响应的选择
本文所采用的驾驶室悬置系统为四点式布置,为了充分考虑各个悬置结构参数对响应的影响,在确立设计因素时,将四个位置的减振器阻尼和螺旋弹簧刚度共八个参数,均列为设计因素。在ADAMS/Insight中对八个因素的变化范围进行设置同时,观察表2~4发现,试验与仿真测得的驾驶室质心纵向加速度均方根值和侧向加速度均方根值的数值均很小,且远小于垂向加速度均方根值,因此,在本次优化中,将驾驶室质心垂向加速度均方根值作为唯一的系统响应,并将驾驶室质心垂向加速度均方根值最小作为优化试验目标。
3.2.2试验矩阵的创建和设计类型的选择
在DOE分析中,需根据试验目的创建相应的试验矩阵,矩阵的列代表着所选取的因素,行用于表示每个因素在每次计算中所对应的水平级,并根据水平级来确定各因素在运算时的具体值。本文选用DOEScreening(2-level)的方法,创建了八因素两水平的试验矩阵,该方法多用于确定影响系统行为的某因素和某些因素的组合以及每个因素对输出会产生多大的影响;选择FractionalFactorial作为优化试验的设计类型,该类型普遍应用于筛选重要变量并主要用于两水平的因素,能够估计其对系统的影响。
结束语:
通过针对样车平顺性的道路试验和相应仿真试验,获得样车及模型在多个车速工况下的驾驶室质心垂向加速度均方根值、纵向加速度均方根值以及侧向加速度均方根值,验证驾驶室悬置系统模型的正确性。
参考文献
[1] 刘勺华,邵亭亭.基于ADAMS的矿用自卸车悬架系统参数化研究[J].农业装备与车辆工程,2016,54(05):64-66.
[2] 郭福祥,史文库,王世朝.轻型卡车驾驶室悬置系统优化匹配设计[J].北京工业大学学报,2015,41(03):347-352.
[3] 唐传政,曾发林,朱亮亮,谢柯.全车速下商用车驾驶室悬置系统优化设计[J].科学技术与工程,2014,14(20):126-131.
[4] 黎新,乔坤,陈勇.汽车驾驶室后悬置支架的拓扑优化设计[J].机械制造与自动化,2012,41(02):20-23.
关键词:驾驶室悬置;Adams/Vibration;平顺性;振动特性;隔振
引言
客户反馈某长头卡车在70km/h车速存在前后、上下耦合的共振,平顺性较差。采用测试与Adams/Vibration仿真相结合的方法研究了该车驾驶室悬置的振动特性,发现其“固定”式驾驶室悬置存在5.5Hz共振点导致平顺性异常,并发现采用“半浮”式驾驶室结构具有较好的平顺性。
1、ADAMS驾驶室简化模型
机械系统动力学自动分析软件是美国MDI公司开发的非常著名的虚拟样机分析软件,也是世界上应用最广泛且最具有权威性的机械系统动力学仿真分析软件。驾驶室实体模型的准确性直接决定着后续计算结果的正確与否。在本文中,驾驶室实体建模的主要思路是:(1)模型不要求与实际尺寸一致,重点在于结构的整体性;(2)模型需要考虑存在的各项工作,这个主要是力求降低模型的复杂性,避免为后续分析带来巨大困扰。因此,简化的驾驶室实体建模为:(1)驾驶室所有面件均为面体,着重考虑承重结构;(2)适当忽略诸如驾驶室的小尺寸结构和过渡工艺结构。ADAMS驾驶室模型由带有集中质量的零部件连接在驾驶室安装位置,包括前横梁、纵梁、地板、驾驶室壳体以及确定刚度的连接部件。
2 驾驶室模型的检验
2.1 样车道路试验
创建的驾驶室模型是否接近实车,将直接影响到后续优化设计的有效性,因此,本文借助相关道路试验和仿真对驾驶室模型的准确性加以检验。
本文所选参考车辆为半挂式载重汽车,多行驶在高速公路或一、二级公路上,用于长途运输,根据GB/T 920-2002《公路路面等级与面层类型代码》,高速公路或一、二级公路上均属于高级路面,即路面功率谱密度较小,因此,参考 GB7031-2005《机械振动道路路面谱测量数据报告》中所提供的路面功率谱密度计算公式:
根据GB/T 4970-2009《汽车平顺性试验方法》,让参考车辆在满载状态下分别以 30km/h、40km/h、50km/h、60km/h和 70km/h的速度在 B级路面上匀速直线行驶一段距离,利用单向加速度传感器获取参考车辆悬置系统与车架连接处的垂向振动加速度;同时,利用三向加速度传感器获得驾驶室座椅处的垂向、纵向以及侧向加速度,并计算相应的加速度均方根值。
2.2 驾驶室模型验证将所获参考车辆悬置系统与车架连接处的垂向振动加速度作为激励函数输入到驾驶室模型中进行仿真,获得各车速下的驾驶室座椅上三向振动加速度均方根值。(awy1、awy2、awy3)与试验测得值(a' wy1、a' wy2、a' wy3)相比较。
对比结果表明,三个方向加速度均方根值的仿真结果与试验结果均相近,其中,垂向最大误差为 6.3%,纵向最大误差为4.4%,侧向最大误差为 8.1%,均在合理范围内,说明将驾驶室视作刚体以及部分元件线性化所获得的驾驶室仿真模型基本准确。
3驾驶室悬置系统优化
3.1DOE参数化分析方法
生产实践中,设计人员常根据经验知识,采用试错法或施加强力的方法来探究和优化机械系统的性能。但当面对较为复杂的设计问题时,这些方法往往不能快速地得出系统化公式化的答案。一次改变一个因素(也称设计参数,Factors)不能反映因素之间的相互影响情况,若进行多次仿真同时测试多个不同的因素则会产生大量的输出数据,增加设计人员评估的难度。而DOE作为一种快速有效的分析方法,可以为安排试验和分析试验结果提供一整套步骤和统计工具,大体包括以下五个基本步骤:(1)确定试验目的;(2)为系统选择需要考察的因素集,并设计某种方法来测量系统的响应;(3)确定每个因素的值,在试验中将因素改变来考察对试验的影响;(4)进行试验,并将每次运行的系统性能记录下来;(5)分析在总的性能改变时,哪些因素对系统的影响最大。考虑到本文所采用的四点式驾驶室悬置系统的两个位置的减振器阻尼和螺旋弹簧刚度均可能对驾驶室振动产生影响,即包涵多个因素,因此选用DOE方法对悬置系统参数进行优化。
3.2优化设计方案的确立
3.2.1设计因素及系统响应的选择
本文所采用的驾驶室悬置系统为四点式布置,为了充分考虑各个悬置结构参数对响应的影响,在确立设计因素时,将四个位置的减振器阻尼和螺旋弹簧刚度共八个参数,均列为设计因素。在ADAMS/Insight中对八个因素的变化范围进行设置同时,观察表2~4发现,试验与仿真测得的驾驶室质心纵向加速度均方根值和侧向加速度均方根值的数值均很小,且远小于垂向加速度均方根值,因此,在本次优化中,将驾驶室质心垂向加速度均方根值作为唯一的系统响应,并将驾驶室质心垂向加速度均方根值最小作为优化试验目标。
3.2.2试验矩阵的创建和设计类型的选择
在DOE分析中,需根据试验目的创建相应的试验矩阵,矩阵的列代表着所选取的因素,行用于表示每个因素在每次计算中所对应的水平级,并根据水平级来确定各因素在运算时的具体值。本文选用DOEScreening(2-level)的方法,创建了八因素两水平的试验矩阵,该方法多用于确定影响系统行为的某因素和某些因素的组合以及每个因素对输出会产生多大的影响;选择FractionalFactorial作为优化试验的设计类型,该类型普遍应用于筛选重要变量并主要用于两水平的因素,能够估计其对系统的影响。
结束语:
通过针对样车平顺性的道路试验和相应仿真试验,获得样车及模型在多个车速工况下的驾驶室质心垂向加速度均方根值、纵向加速度均方根值以及侧向加速度均方根值,验证驾驶室悬置系统模型的正确性。
参考文献
[1] 刘勺华,邵亭亭.基于ADAMS的矿用自卸车悬架系统参数化研究[J].农业装备与车辆工程,2016,54(05):64-66.
[2] 郭福祥,史文库,王世朝.轻型卡车驾驶室悬置系统优化匹配设计[J].北京工业大学学报,2015,41(03):347-352.
[3] 唐传政,曾发林,朱亮亮,谢柯.全车速下商用车驾驶室悬置系统优化设计[J].科学技术与工程,2014,14(20):126-131.
[4] 黎新,乔坤,陈勇.汽车驾驶室后悬置支架的拓扑优化设计[J].机械制造与自动化,2012,41(02):20-23.