论文部分内容阅读
长期以来,在小学数学教学中,要使学生有良好的数学素质,必须进行多方面能力的培养。其中,思维能力的培养尤为重要。加强学生思维训练,培养学生的思维能力,是小学数学教学的主要任务之一,是实施素质教育开发学生智能,提高学生素质的重要措施。下面就如何培养学生的思维能力谈几点粗浅的看法。
一、进行类比迁移,培养思维的深刻性
思维的深刻性是指思维活动达到较高的抽象程度和逻辑水平,表现在能善于深入地思索问题,从纷繁到复杂的现象中,抓住发现事物的本质规律。小学生的认知结构往往缺损,他们不善于将知识纳入原有的认知结构之中,因而考虑问题缺乏深度,因此,在教学中应抓以下三点:
1、培养学生对数的概括能力。
数的分解能力,是数的概括的核心。如教20以内的加法,利用直观教具,让学生了解某数是由几个部分组成和如何组成的,引导他们将20以内的数比较实际意义,认识大小,顺序、进行组合与分解练习。
2、让学生逐步掌握简单的推理方法。
根据教材的内在联系,引导学生进行类比推理。例如:在乘法口诀教学中,先通过一环紧扣一环的步骤,让学生展示“生动”的思维过程,使学生认识2—4的乘法口诀的可信性,还了解每句乘法口诀形成的过程。然后利用低年级学生模仿性强的特点,让他们模仿老师的做法去试一试,推导出5—6的乘法口诀。生模仿获得成功后,就与他们一起总结步骤。
3、培养掌握应用题结构的能力。
各科教学问题,都有一个结构问题。狠抓结构训练,使学生掌握数学问题的数量关系,而不受题中具体的情节干扰,是培养思维深刻性的重要一环。由于低年级学生受年龄和知识水平的限制,他们的思维往往带有很大的局限性。为此,我在数学教学中采取多种方法。如:补充条件和问题,不变题意而改变叙述方法,根据问题说所需条件,扩题训练,拆应用题缩题训练,审题训练,自编应用题训练等等,拓展学生思维活动,训练学生思维的深刻性。
二、开拓解题思路,培养思维的灵活性
客观事物是发展变化的,这就要求人们用变化、发展的观点去认识和解决问题。数学思维灵活性的突出表现是善于发现新的因素,在思维受阻时能及时改变原定策略,及时修正思考路线,探索出解决问题的有效途径。思维的灵活性是指善于从不同角度和不同方面进行分析思考。学生解题的思路广、方法多、解法好,就是思维灵活的表现。在数学教学中,教师要注重启发学生从多角度思考问题,鼓励联想,提倡一题多解。同时,设计开放性练习,促进学生思维灵活性的发展,提高他们创造性解决问题的能力。
如学习“比和比例”的知识后,我设计了这样一道题:甲、乙两车合运77吨货物,甲车比乙车多运了1/3,甲、乙两车各运多少吨货物?我要求学生先分析这是一道什么类型的应用题,然后选择适当的方法进行解答。当大部分学生都把它归入分数应用题来解答后,我提醒学生能否从其他思路去思考。学生经过分析,概括出这是一道“把一个总量分成两个部分量”的题目,可以用按比例分配的方法来解答。接着要求学生说出按比例分配题目的特点,即“已知总量和两个部分量的比,求两个部分量”,让学生根据“甲车比乙车多运了1/3”得出“甲车与乙车所运货物的比是(1+3)∶3”,从而用按比例分配的方法来解答。
三、强化技能训练,培养思维的敏捷性
强化技能训练是培养思维敏捷性的主要手段。思维的敏捷性是指思维活动的速度,表现在数学学习中能善于抓住问题的本质,正确、合理、巧妙地运用概念、法则、性质、公式等基本知识,简缩运算环节和推理过程,使运算既准又快。因此,我在计算教学过程中,以培养学生思维的敏捷为目的,要求学生有正确迅速的计算能力。办法有以下两点:
1、计算教学中,要求学生在正确的基础上,始终有速度。
对于低年级的学生,应注意抓好学生计算的正确率的同时,狠抓速率训练,每天用一定时间进行一次速算练习。老师说前半句乘法口诀,全班同学回答下半句乘法口诀,让全体学生的思维都处于积极状态。速算比赛,如:比在规定时间内完成计算题的数量,比完成规定习题所需时间,使全班学生人人都能正确迅速地思考问题。
2、计算过程中传授一些速算方法。
例如:在学习掌握“凑十法”的基础上,借鉴珠算的长处,教给学生“互补法”使学生知道1和9,2和8,3和7,4和6等互为补数。如计算9+2时,因为9和1互为补数,就能见9想10,得11。通过反复训练,引导学生合理联想,沟通知识间的内在联系,是训练学生思维敏捷一条行之有效的途径。
四、提倡求异思维,培养思维的独创性
创新思维是获取和发现新知识活动中应具备的一种重要思维,它表现为不循常规、不拘常法、不落俗套、寻求变异、勇于创新。在教学中要提倡标新立异,鼓励学生探究求新,激发学生在头脑中对已有知识进行“再加工”,并加以调整、改组和充实,创造性地寻找独特简捷的解法,提出各种“别出心裁”的方法,这些都能促进学生思维独创性的形成。
例如,在引导学生概括圆柱体表面积的计算方法时,大部分学生都是按照常规的思维得出以下的计算方法:圆柱体的表面积=一个侧面积+两个底面积(即S=ch+2πr2)。这时,我鼓励学生:“能不能概括一种更简便的计算方法呢?”一些学生通过进一步的观察后将圆柱体的一个底面拼成一个近似的长方形,知道一个底面拼成的长方形的长相当于圆柱底面周长的一半,两个底面合拼成的长方形的长恰好是圆柱的底面周长,宽又正好是圆柱底面的半径,从而得出两个长方形的面积之和为cr。因为圆柱的侧面积是ch,因此,圆柱表面积的计算方法为S=c(h+r)。接着,让学生作进一步的比较,发现后一种方法计算比较简便。这样的教学充分发挥了学生的创造才能,调动了他们学习的积极性和主动性,使所学知识理解得更深刻,独创性思维品质也得以培养与发展。
总之,低年级学生思维能力培养,是我们当今数学教学中必然趋向。让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学,让他们的数学思维能力在课堂学习中得到充分的发展。
一、进行类比迁移,培养思维的深刻性
思维的深刻性是指思维活动达到较高的抽象程度和逻辑水平,表现在能善于深入地思索问题,从纷繁到复杂的现象中,抓住发现事物的本质规律。小学生的认知结构往往缺损,他们不善于将知识纳入原有的认知结构之中,因而考虑问题缺乏深度,因此,在教学中应抓以下三点:
1、培养学生对数的概括能力。
数的分解能力,是数的概括的核心。如教20以内的加法,利用直观教具,让学生了解某数是由几个部分组成和如何组成的,引导他们将20以内的数比较实际意义,认识大小,顺序、进行组合与分解练习。
2、让学生逐步掌握简单的推理方法。
根据教材的内在联系,引导学生进行类比推理。例如:在乘法口诀教学中,先通过一环紧扣一环的步骤,让学生展示“生动”的思维过程,使学生认识2—4的乘法口诀的可信性,还了解每句乘法口诀形成的过程。然后利用低年级学生模仿性强的特点,让他们模仿老师的做法去试一试,推导出5—6的乘法口诀。生模仿获得成功后,就与他们一起总结步骤。
3、培养掌握应用题结构的能力。
各科教学问题,都有一个结构问题。狠抓结构训练,使学生掌握数学问题的数量关系,而不受题中具体的情节干扰,是培养思维深刻性的重要一环。由于低年级学生受年龄和知识水平的限制,他们的思维往往带有很大的局限性。为此,我在数学教学中采取多种方法。如:补充条件和问题,不变题意而改变叙述方法,根据问题说所需条件,扩题训练,拆应用题缩题训练,审题训练,自编应用题训练等等,拓展学生思维活动,训练学生思维的深刻性。
二、开拓解题思路,培养思维的灵活性
客观事物是发展变化的,这就要求人们用变化、发展的观点去认识和解决问题。数学思维灵活性的突出表现是善于发现新的因素,在思维受阻时能及时改变原定策略,及时修正思考路线,探索出解决问题的有效途径。思维的灵活性是指善于从不同角度和不同方面进行分析思考。学生解题的思路广、方法多、解法好,就是思维灵活的表现。在数学教学中,教师要注重启发学生从多角度思考问题,鼓励联想,提倡一题多解。同时,设计开放性练习,促进学生思维灵活性的发展,提高他们创造性解决问题的能力。
如学习“比和比例”的知识后,我设计了这样一道题:甲、乙两车合运77吨货物,甲车比乙车多运了1/3,甲、乙两车各运多少吨货物?我要求学生先分析这是一道什么类型的应用题,然后选择适当的方法进行解答。当大部分学生都把它归入分数应用题来解答后,我提醒学生能否从其他思路去思考。学生经过分析,概括出这是一道“把一个总量分成两个部分量”的题目,可以用按比例分配的方法来解答。接着要求学生说出按比例分配题目的特点,即“已知总量和两个部分量的比,求两个部分量”,让学生根据“甲车比乙车多运了1/3”得出“甲车与乙车所运货物的比是(1+3)∶3”,从而用按比例分配的方法来解答。
三、强化技能训练,培养思维的敏捷性
强化技能训练是培养思维敏捷性的主要手段。思维的敏捷性是指思维活动的速度,表现在数学学习中能善于抓住问题的本质,正确、合理、巧妙地运用概念、法则、性质、公式等基本知识,简缩运算环节和推理过程,使运算既准又快。因此,我在计算教学过程中,以培养学生思维的敏捷为目的,要求学生有正确迅速的计算能力。办法有以下两点:
1、计算教学中,要求学生在正确的基础上,始终有速度。
对于低年级的学生,应注意抓好学生计算的正确率的同时,狠抓速率训练,每天用一定时间进行一次速算练习。老师说前半句乘法口诀,全班同学回答下半句乘法口诀,让全体学生的思维都处于积极状态。速算比赛,如:比在规定时间内完成计算题的数量,比完成规定习题所需时间,使全班学生人人都能正确迅速地思考问题。
2、计算过程中传授一些速算方法。
例如:在学习掌握“凑十法”的基础上,借鉴珠算的长处,教给学生“互补法”使学生知道1和9,2和8,3和7,4和6等互为补数。如计算9+2时,因为9和1互为补数,就能见9想10,得11。通过反复训练,引导学生合理联想,沟通知识间的内在联系,是训练学生思维敏捷一条行之有效的途径。
四、提倡求异思维,培养思维的独创性
创新思维是获取和发现新知识活动中应具备的一种重要思维,它表现为不循常规、不拘常法、不落俗套、寻求变异、勇于创新。在教学中要提倡标新立异,鼓励学生探究求新,激发学生在头脑中对已有知识进行“再加工”,并加以调整、改组和充实,创造性地寻找独特简捷的解法,提出各种“别出心裁”的方法,这些都能促进学生思维独创性的形成。
例如,在引导学生概括圆柱体表面积的计算方法时,大部分学生都是按照常规的思维得出以下的计算方法:圆柱体的表面积=一个侧面积+两个底面积(即S=ch+2πr2)。这时,我鼓励学生:“能不能概括一种更简便的计算方法呢?”一些学生通过进一步的观察后将圆柱体的一个底面拼成一个近似的长方形,知道一个底面拼成的长方形的长相当于圆柱底面周长的一半,两个底面合拼成的长方形的长恰好是圆柱的底面周长,宽又正好是圆柱底面的半径,从而得出两个长方形的面积之和为cr。因为圆柱的侧面积是ch,因此,圆柱表面积的计算方法为S=c(h+r)。接着,让学生作进一步的比较,发现后一种方法计算比较简便。这样的教学充分发挥了学生的创造才能,调动了他们学习的积极性和主动性,使所学知识理解得更深刻,独创性思维品质也得以培养与发展。
总之,低年级学生思维能力培养,是我们当今数学教学中必然趋向。让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学,让他们的数学思维能力在课堂学习中得到充分的发展。