论文部分内容阅读
对P507萃淋树脂分离稀土元素的条件进行了实验,拟定了以P507萃淋树脂为固定相,HCl为流动相分离4N级荧光材料Eu_2O_3中14种稀土杂质元素的流程,使被测杂质与基体Eu_2O_3达到了较好的分离;再用阳离子交换树脂分离被测液中非稀土杂质元素。选择了端视ICP-AES测量稀土杂质元素的最佳条件。称样量50mg时各杂质组分的测定下限(ug/g)为:CeO_2、Pr_6O_(11)、Nd_2O_3、Sm_2O_3、Tb_4O_7、Ho_2O_3、Er_2O_3,Tm_2O_3、Lu_2O_30.4,La_2O_3、Gd_2O_3、0.2,Dy_2O_3、Y_2O_30.04,Yb_2O_30.02。6次取样分析,各杂质组分加入量为10ug/g(CeO_2为2ug/g),加入回收率在84%~112%;RSD<13%。方法可用于纯度在99.99%~99.9995%Eu_2O_3中14种稀土杂质元素的测定。
The conditions for the separation of rare earth elements from P507 extraction resin were studied and the procedure for separating 14 kinds of rare earth elements from 4N fluorescent material Eu_2O_3 using P507 extraction resin as stationary phase and HCl as mobile phase was proposed. Eu_2O_3 to achieve a better separation; then cation exchange resin separation of the measured non-rare earth impurity elements. The best condition for rare earth impurity element measurement by end-point ICP-AES was chosen. The lower limit of determination (ug / g) of each impurity component when weighing 50mg is as follows: CeO_2, Pr_6O_ (11), Nd_2O_3, Sm_2O_3, Tb_4O_7, Ho_2O_3, Er_2O_3, Tm_2O_3, Lu_2O_3.4, La_2O_3, Gd_2O_3, Dy 2 O 3, Y 2 O 30.04 and Yb 2 O 30.02.6, the recovery rate was 84% -112% and the RSD <13% for 10ug / g (CeO 2 = 2ug / g). The method can be used for the determination of 14 kinds of rare earth elements in the purity of 99.99% ~ 99.9995% Eu_2O_3.