论文部分内容阅读
一个环R的一个元α叫做一个强零因子,假如对R中的某个非零元b,有〈α〉〈b〉=0,或者〈b〉〈α〉=0(其中〈x〉是由x∈R生成的理想).在该文中,用S(R)表示所有强零因子的集合.对于任意的一个环r,用^~Г(R)表示一个无向图,它的顶点集是S(R)^*=S(R)-{0},其中两上不同的顶点α和b相连当且仅当〈n〉〈b〉=0或者〈b〉〈α〉=0.该文主要研究质环直积的强零因子图的团数.