论文部分内容阅读
提高高中数学教学质量,不仅仅是为了提高学生的数学成绩,更重要的是能使学生学到有用的数学。为此,笔者认为,在高中数学教学中构建数学建模意识无疑是数学教学改革的一个正确的方向。本文结合自己的教学体会,从理论上及实践上阐述一下构建数学建模意识的基本方法和通过建模教学培养学生的创新思维。
1. 數学建模与数学建模意识
著名数学家怀特海曾说:“数学就是对于模式的研究”。所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。
培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理。这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。
2. 构建数学建模意识的基本途径
(1)为了培养学生的建模意识,数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。
(2)数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(3)注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此,我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。
(4)在教学中还要结合专题讨论与建模法研究。我们可以选择适当的建模专题,如“代数法建模”、“图解法建模”、“直(曲)线拟合法建模”,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。
3. 把构建数学建模意识与培养学生创造性思维过程统一起来
(1)发挥学生的想象能力,培养学生的直觉思维。
众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等。应该说,它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。
(2)构建建模意识,培养学生的转换能力。
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此,如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。
(3)以“构造”为载体,培养学生的创新能力。
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。
如:在一条笔直的大街上,有n座房子,每座房子里有一个或更多的小孩,问:他们应在什么地方会面,走的路程之和才能尽可能地少?
分析:如何表示房子的位置?构造数轴,用数轴表示笔直的大街,几座房子分别位于x1、x2 、… 、xn ,不妨设x1 < x2 <… < xn ,又设各座房子中分别有a1 、a2 、… 、an 个小孩,则问题就成为求实数x ,使f(x)=∑ni-1 ai|x - xi|最小。
从上面例子可以看出,只要我们在教学中教师仔细地观察,精心的设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。
综上所述,在数学教学中构建学生的数学建模意识与素质教学所要求的培养学生的创造性思维能力是相辅相成,密不可分的。要真正培养学生的创新能力,光凭传授知识是远远不够的,重要的是在教学中必须坚持以学生为主体,不能脱离学生搞一些不切实际的建模教学。我们的一切教学活动必须以调动学生的主观能动性,培养学生的创新思维为出发点,引导学生自主活动,自觉的在学习过程中构建数学建模意识,只有这样才能使学生分析和解决问题的能力得到长足的进步,也只有这样才能真正提高学生的创新能力,使学生学到有用的数学。
收稿日期:2013-02-18
1. 數学建模与数学建模意识
著名数学家怀特海曾说:“数学就是对于模式的研究”。所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。
培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理。这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。
2. 构建数学建模意识的基本途径
(1)为了培养学生的建模意识,数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。
(2)数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(3)注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此,我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。
(4)在教学中还要结合专题讨论与建模法研究。我们可以选择适当的建模专题,如“代数法建模”、“图解法建模”、“直(曲)线拟合法建模”,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。
3. 把构建数学建模意识与培养学生创造性思维过程统一起来
(1)发挥学生的想象能力,培养学生的直觉思维。
众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等。应该说,它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。
(2)构建建模意识,培养学生的转换能力。
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此,如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。
(3)以“构造”为载体,培养学生的创新能力。
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。
如:在一条笔直的大街上,有n座房子,每座房子里有一个或更多的小孩,问:他们应在什么地方会面,走的路程之和才能尽可能地少?
分析:如何表示房子的位置?构造数轴,用数轴表示笔直的大街,几座房子分别位于x1、x2 、… 、xn ,不妨设x1 < x2 <… < xn ,又设各座房子中分别有a1 、a2 、… 、an 个小孩,则问题就成为求实数x ,使f(x)=∑ni-1 ai|x - xi|最小。
从上面例子可以看出,只要我们在教学中教师仔细地观察,精心的设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。
综上所述,在数学教学中构建学生的数学建模意识与素质教学所要求的培养学生的创造性思维能力是相辅相成,密不可分的。要真正培养学生的创新能力,光凭传授知识是远远不够的,重要的是在教学中必须坚持以学生为主体,不能脱离学生搞一些不切实际的建模教学。我们的一切教学活动必须以调动学生的主观能动性,培养学生的创新思维为出发点,引导学生自主活动,自觉的在学习过程中构建数学建模意识,只有这样才能使学生分析和解决问题的能力得到长足的进步,也只有这样才能真正提高学生的创新能力,使学生学到有用的数学。
收稿日期:2013-02-18