C-H活化相关论文
氢化物转移反应在有机合成和化学工业过程中都发挥着重要作用,是合成各类结构骨架的强大工具。经典的氢化物转移反应包括(脱)氢化、......
过渡金属催化的C-H键官能团化反应作为化学合成中非常重要的反应之一,可通过与官能团的偶联反应来获得较为复杂的分子骨架,为有机......
氮杂环化合物是许多天然产物的关键活性结构,嘌呤核苷及其衍生物是其中一类具有显著生物活性的化合物,在抗肿瘤、抗病毒中表现出优......
近年来,Pd(Ⅱ)催化的碳氢键活化反应取得了显著的进展。许多底物中的惰性碳氢键都得到了有效的活化,成功构建碳-杂原子化学键。同时......
作为一种重要的结构骨架,二氢吲哚环存在于许多天然产物、药物分子和合成中间体中。因此,二氢吲哚结构的构建吸引了几代化学家的关......
卟啉聚合物是由卟啉和有机连接体通过各种反应连接而成或者在合成卟啉时直接连接聚合而成,具有丰富的孔结构,大比表面积,稳定的结......
异喹啉酮类化合物是天然生物碱中重要的含氮杂环分子骨架,大多数含有这种骨架的化合物具有独特的生物活性,如抗肿瘤、抗免疫活性、......
含氮杂环芳烃在人工合成药物和天然产物中广泛存在,在疾病治疗中起着不可替代的作用。此外,其在光电功能材料领域也有着极好的应用......
含氮化合物是一类非常重要的物质,在医药学、化学工业等领域有着重要地位。由廉价、易得且普遍存在的含有C-H键的化合物为原料合成......
天然气是一种对环境相对友好的优质资源,其主要成分是低碳烷烃类化合物。烷烃的分子结构由强的C-C键和局域的C-H键构成,在实际的反......
麦角生物碱因其在结构上与多巴胺、血清素和去甲肾上腺素等神经递质有较大的相似性而具有广泛的药理活性,作为药物已应用于帕金森......
近年来,金属抗癌药物由于其高的细胞活性和靶向性越来越受到大家关注,其中一类非常重要的抗癌化合物为金属铱化合物。本文设计合成......
杂环化学作为有机化学领域的关键组成部分,在现代有机合成反应中扮演着重要的角色。特别是对于含氮杂环化合物的研究更具有应用价......
以一氧化碳为羰基源的羰基化反应作为无机-有机转化的重要方法之一,已经被广泛运用到工业生产中。近年来,基于碳氢键活化的氧化羰......
在过去的几十年里,涌现出大量利用二烷基H-亚磷酸酯作为磷试剂来构建C-P键的合成方法[1]。二烷基H-亚磷酸酯作为重要的反应中间体,......
光电功能高分子的大部分合成是基于金属偶联的逐步聚合反应,例如Yamamoto、Ullmann、Sonogashira、Heck、Stille、Suzuki 反应等。......
水是最安全和廉价的溶剂,应用在均相环境友好和制药化学工业。但在多相反应中,有机反应物在水中溶解度低,不利于在催化剂表面吸附,催化......
在Frank Glorius教授课题组从事博士后研究期间,我对铑催化的C-H活化反应进行了以下六方面的研究:1)铑(Ⅲ)催化水杨醛经C-H活化发生H......
许多化学反应过程都离不开金属(尤其是贵金属)催化剂,比如金、铂、钯、铑、铷等贵金属在氧化、偶联、加氢等反应过程中被广泛使用。......
烷烃不仅是自然界中储量丰富的能源物质,同时也是工业上生产高附加值产品的重要化工原料[1]。但由于烷烃的高稳定性,其活化及转化通......
纳米结构碳材料例如石墨烯,碳纳米管,纳米金刚石等作为一类新型的催化剂材料已经应用在各种不同的化学反应中,并且展现出了可以替代传......
以苯并咪唑为骨架的含氮杂环化合物具有广泛的生物活性,无论是在人类医药治疗领域还是农业发展领域都扮演着极其重要的角色,如在医药......
催化反应是当代合成化学的核心和基础,以Ir(Ⅲ)为代表的光催化剂能够有效吸收可见光,产生的激发态中间体能够显著改变底物的反应特性......
过渡金属催化交叉偶联已成为化学合成的有效策略,在这一领域,直接C-H键官能化是构建新的C-C或C-X键的最有效的方法之一。在过去的......
钯催化剂是应用最广的一种催化剂,二价钯通过和配体形成配位键而使催化剂具有一定的选择性,而氮杂环卡宾(NHC)是一种新型的配体,......
近年来发展的C-H键活化策略直接利用有机分子中广泛存在的C-H键来构筑C-C键或C-X键,节约了反应步骤,提高了反应效率,并且减少了无......
通过C-H活化的方法,我们合成了一种新型的以噻吩为核、两个1,8-萘酰亚胺为端基的小分子受体(NI-T-NI),并将其用于聚合物太阳能......
近年来,Cu催化的耦合反应已经得到广泛的应用,尤其是在许多重要的有机合成应用中。本文采用密度泛函理论B3LYP/DZVP方法研究了......
催化剂转移缩聚反应和C-H活化缩聚反应是近年来发展起来的共轭高分子合成新方法,本文将介绍我们在这两方面的研究进展。......
钯催化的惰性碳氢键的活化研究在是目前有机合成的前沿领域。该方法相对于传统的偶联反应,无需对底物进行预官能化,从而提高了原......
过渡金属催化或促进的C-H 活化是构筑碳-碳和碳-杂键的重要方法之一.通常认为此类反应经历了金属杂环中间体,但能够成功分离并......
开发了一种以溶剂作为溴源和氯源,利用多相钯催化剂活化2-苯基吡啶C(sp2)-H键的二卤化反应。通过改变反应条件选择性控制实现了导......