Pharmaceutical tablet analysis using on-line pre-treatment system with SFE and LC/MS

来源 :第三届全国质谱分析学术报告会 | 被引量 : 0次 | 上传用户:sunnymurder
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Super Fluid Extraction(SFE) technique is very useful as an extraction method for various analyses,because it is able to extract the target compounds automatically from many kinds of sample forms as such solid,gel and so on.Another advantage of using SFE system is its ability to enrich sample concentration.
其他文献
光催化活性强烈依赖于催化剂的表面结构以及形貌粒度,催化剂的粒度大小不同,其表面原子比例、价带/导带的氧化还原能力及表面能等存在差异,直接影响了光催化的性能[1-2]。近年来,关于纳米催化剂粒度与催化性能构效关系成为了研究的热点,然而有关光催化过程的光热协同微观机理或机制的研究却少见报道或研究技术较为滞后,揭示粒度对催化热动力学的本质更为鲜见[3]。
ZnO是一种重要的半导体材料,被广泛应用于光催化、太阳能电池、光电化学生物传感器等领域[1-3].但由于其禁带宽度较大(约3.2 eV),只能利用紫外光,对太阳能的利用率较低.通过离子掺杂、量子点修饰、有机染料负载等方法,提高ZnO对可见光的吸收,成为近年来提升ZnO光电性能的研究热点.本项目通过提取植物色素,对ZnO纳米棒阵列进行敏化,提高其对可见光的吸收,增强光电转换效率.基于该复合材料构建光
2-氨基噻唑类衍生物是药物和天然产物一种常见的结构单元1,传统合成方法产率低,底物局限,条件苛刻。在本研究中,我们巧妙设计在可见光驱使下应用简单的铜盐促进的合成4-烷基/芳基-2氨基噻唑类衍生物2,3,其中铜盐扮演了双重角色:1)与硫氰酸根负离子原位形成光敏剂催化反应; 2)作为路易斯酸催化硫氰酸负离子亲核进攻氮杂环丙烯开环。
In order to improve the photocatalytic property of WO3/TiO2 composite,a novel structure,hollow microsphere with mesoporous wall,was fabricated.
In this paper,we put forward a novel method for the fabrication of metal-organic inverse opals(MOIOs)by infiltration of Pb(NO3)2 into the interstice of the poly(St-MMA-AA)PC template and the subsequen
The use of photons as “traceless and green reagents” renders photochemical processes green and sustainable.Light activation of molecules provides access to reaction pathways which are otherwise imposs
Recently,we exploited a novel strategy to control the cell membrane potential by utilizing intramolecular photoinduced electron-transfer(PET) in the amphiphilic donor-acceptor linked molecules consist
会议
An efficient water reduction system was developed using thermally activated delayed fluorescence(TADF) dyes as organic photosensitizers and a palladium-phosphine complex as water reduction catalyst.
会议
Artificial photosynthesis is a chemical process that seeks to capture and store energy from sunlight to meet rising globe energy demand.[1] An active and stable photosensitizer is significant for effi
构建一维金属-半导体异质结是提高光催化剂电荷分离和转移效率的有效途径。[1-2]我们通过在金棒两端选择性的负载TiO2纳米粒子,得到了哑铃状的Au-TiO2复合光催化剂(图1),并且在自然光照且无牺牲剂存在下实现了高效的光催化分解水产氢效率。此外,通过研究不同波长光照下的催化效率,我们确定了光生电荷转移的主要方向。