非倍测度下参数型Marcinkiewicz积分交换子的估计

来源 :新疆大学 | 被引量 : 0次 | 上传用户:gmglass
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
调和分析主要研究的对象是函数空间和一些算子.Marcinkiewicz积分算子作为调和分析中的经典算子之一.近些年来,对于Marcinkiewicz积分算子、参数型M arcinkiewicz积分算子及其交换子在n维Euclidean空间Rn上取得了许多结果.进一步得到了非倍测度下关于Marcinkiewicz积分算子及其交换子的有界性问题.在这些已有结论的基础上,本论文主要讨论了非倍测度下参数型Marcinkiewicz积分交换子的有界性问题,这些结论丰富了参数型Marcinkiewicz积分交换子的理论.本论文主要由以下四章构成:第一章,介绍了文章的研究背景和现状以及本论文的结构.第二章,讨论了具有非倍测度的参数型Marcinkiewicz积分与Lipschitz函数b生成的交换子Mρb在Lebesgue空间和RBMO(μ)空间上的有界性.第三章,证明了非倍测度下由参数型Marcinkiewicz积分与Lipschitz函数b生成的交换子Mρb从Morrey空间到Morrey空间的有界性,以及从Morrey空间到Lipschitz空间的有界性.第四章,建立了非倍测度下由参数型Marcinkiewicz积分与Lipschitz函数b生成的交换子Mρb在Hardy空间上的有界性.
其他文献
红新星由于其特殊的光谱和光度特性一直备受关注。V1309 Sco和V838 Mon的观测数据表明这类恒星很可能是由双星合并产生的。如果是这样,那么红新星的研究就给我们认识双星的合
本文主要采用广义多项式混沌方法求解带有随机输入的热传导方程和带有随机输入的Allen-Cahn方程,通过多项式混沌方法对随机参数空间的处理,一个带有随机输入的偏微分方程就转
除了交易者信念的异质性,与传统金融模型不同的是,两类投资者的风险态度因心理因素而随时间变化,例如前景理论的反射性影响,即:在收益(亏损)情形下风险厌恶(风险偏好)的逆转
在本毕业论文中我们要讨论两个问题。首先,我们构造了D4型量子包络代数Uq(D4)正部分U+q(D4)的极小投射分解的前三步。设k是一个域,A是一个结合的增广(augmented)代数。我们考
一个顶点子集F被称作是一个连通k-子图覆盖(记作V CCk)如果任意k个点的连通子图至少有一个顶点在集合F中.最小赋权的连通k-子图覆盖问题(记作MWV CCk)是指找一个权和最小的顶
Hardy空间的实变理论是调和分析研究的核心内容之一,在分析学领域和偏微分方程中都有重要的应用.设A是Rn上的一个扩张矩阵,φ:Rn×[0,∞)→[0,∞)是一个Musielak-Orlicz函数.
设G=(V,E)是一个简单图,C是G的一个至少有两个顶点的子图,如果C是一个极大的完全子图,则称C是图G的一个团.设D是图G的一个顶点子集,如果对于G的任意一个团C,D∩C?=?,则称D是
传染病动力学模型的理论研究,给我们预防和控制各类疾病提供了理论上的依据.本文通过运用传染病动力学、微分方程定性及稳定性理论,主要采用嵌套反证的方法,研究了三类连续的
广义线性模型是经典线性模型的扩展,其因变量不再限制在正态分布,而是扩展到指数分布族,通过连接函数将自变量和因变量之间的关系设定为非线性关系,这不仅为拟合属性变量和取
生态用地不仅为动植物提供了庇护场所,也为人类提供了各项生态服务,一直以来都扮演着极为重要的角色。人口数量的激增使得人类活动区域不断扩张,大量生态用地不断被取代。随着环境保护理念的普及和可持续发展战略的实施,人民逐渐意识到生态用地的价值。对生态用地的现状和变化进行归纳,分析影响生态用地变化的驱动因子,模拟生态用地的变化方向,对生态保护政策的制定及土地资源的合理利用有重大意义。本文依托中科院资源环境科