论文部分内容阅读
钾肥、铝土矿是我国紧缺的重要资源之一,每年60%以上需要进口。另一方面,我国的不溶性富钾矿石资源极其丰富,其中富含钾、铝,由于缺乏合理的技术路线而未被开发利用。如何经济的利用富钾矿石提取钾、铝是世界科技工作者研究了上百年的技术难题。本研究提出的一种利用氟化学法对钾长石进行综合利用开发的工艺路线,通过对工艺流程、反应器探讨,产物氟残留、矿物分解速率及分解率等方面的研究,为氟化学法综合开发钾长石的工业化提供理论基础。研究表明:1、氟化学法可高效综合利用钾长石生产硫酸钾、氧化铝、石英砂、石膏等系列产品,过程简单、生产成本低。2、研究首次采用的管道反应器相比于釜式反应器具有反应过程更有利于氟化学腐蚀反应过程、生产连续性强、更易于工程放大。实验研究表明:钾长石氟化学腐蚀反应过程中,氟硅酸用量变化从1:1:3~1:3:3,硫酸用量变化从1:3:0.5~1:3:3,反应产物在400℃下煅烧后,反应渣中未循环氟含量占反应渣总质量分数的1.8%~5%,钾长石分解率为84%~97%。其中,在反应温度为70℃,配比为1:3:3,时,未循环氟含量最低,为1.78%,钾长石分解率为93%,此条件下有利于氟循环,提取率也较为理想。XRF分析结果表明:1、反应渣主要含有的氟化物为AlF3、KF、K3AlF6、K2SiF6。2、不溶渣中主要含有的氟化物为AlF3、K2SiF6。XRD分析结果表明:氟化物AlF3和K2SiF6在氟硅酸质量配比1:1:3~1:3:3范围内随氟硅酸用量增加而增多,在硫酸质量配比1:3:0.5~1:3:3范围内随硫酸用量增加而增加,在反应温度30~80℃随温度增加而减少,在反应时间13~62min范围内随时间增加而减少。因此减少氟硅酸和硫酸使用量,增加反应温度和反应停留时间有利于减少AlF3和K2SiF6的生成。实验结果表明:氟硅酸在管道反应器中反应级数b为0.2438,硫酸在管道反应器中的反应级数c为0.4249,反应过程的活化能Ea=19.5695kJ·mol-1。在管道反应器氟化学反应分解过程中,提高氟硅酸浓度、提高硫酸浓度、提高反应温度都可以显著的提高钾长石在管道反应器中的分解速率,提高钾长石的综合生产效率。推导得到的微分公式可使用MATLAB循环积分计算方法计算得到钾长石在管道反应器中与酸反应后的分解率近似值,节约了实验摸索过程的时间、物料、人工成本。