论文部分内容阅读
随着电力电子功率器件在各种大功率电子设备中的广泛应用,IGBT开关管已普遍应用于各种大功率开关场合。IGBT是一款以电压控制、工作耐压高、输入阻抗高、输出阻抗低、开关频率高的开关器件。针对大功率IGBT器件的控制,需要稳定可靠的驱动电路实现开关控制。驱动电路是控制信号和功率电路的中间连接桥梁,因此设计一款安全可靠、经济实惠的驱动模块至关重要。本文依据核磁共振梯度功放系统对驱动电路的设计要求,设计完成了一款驱动能力强、能够实现高压隔离、并且具有完善保护电路的IGBT驱动模块,论文的主要内容包括:1、本文在分析IGBT内部结构的基础上,讨论了IGBT的开关特性,针对IGBT工作过程中失效的主要原因(过压、过流、过热等)进行了详细分析,提出了大功率IGBT驱动模块设计的关键问题,给出了大功率IGBT驱动模块的整体设计方案。2、完成了大功率IGBT驱动模块主电路的设计。驱动输入电路实现了信号之间的互锁和故障检测功能;采用脉冲变压器隔离的方式实现了驱动信号和功率电路的电气隔离;通过死区电路的设计,避免了IGBT在开通过程中因为控制信号的错误导致上下桥壁直通而造成的短路现象;设计了栅极驱动电路,主要是为IGBT的驱动信号提供功率放大功能,并且尽量减少电路中的开关电压尖峰;针对IGBT在工作过程中出现的异常现象分别设计了钳位电路、过流保护电路、过热保护电路等,从而有效地保证了IGBT能够安全稳定地运行。3、大功率IGBT工作电压高达几百伏,功率电路的故障可能会影响到驱动模块的稳定性,因此本文设计了独立的DC-DC隔离电源。该电源以UC3842作为主控芯片,以单端反激的拓扑结构设计了具有三路输出的独立电源,电源输出电压分别为?15V、5V。该电源采用光耦隔离的方式实现了反馈控制,使得整个电源构成了完整的闭环控制系统。4、采用Pspice软件对驱动模块的各部分电路进行了仿真验证,根据仿真结果对电路中的参数进行了优化设计。5、基于仿真分析完成了驱动模块的PCB制版并进行了实际电路的调试,通过将模块搭载到磁共振梯度功放系统进行模块性能测试分析。