【摘 要】
:
随着物联网的发展,物联网技术已经应用到社会的各个领域。物联网平台作为物联网技术的基础设施,可以实现设备、数据、信息的交互,完成统一的管理和监控。物联网平台的高效运营、安全维护和性能监控十分重要。日志是各种设备、系统平台及应用程序等运行时产生的大量事件记录,可以依据日志快速找出问题所在。因此日志分析对物联网平台的运营和维护十分关键。本文通过对物联网平台日志的解决方案进行研究,设计并实现了一个物联网平
论文部分内容阅读
随着物联网的发展,物联网技术已经应用到社会的各个领域。物联网平台作为物联网技术的基础设施,可以实现设备、数据、信息的交互,完成统一的管理和监控。物联网平台的高效运营、安全维护和性能监控十分重要。日志是各种设备、系统平台及应用程序等运行时产生的大量事件记录,可以依据日志快速找出问题所在。因此日志分析对物联网平台的运营和维护十分关键。本文通过对物联网平台日志的解决方案进行研究,设计并实现了一个物联网平台日志分析系统。该系统采用分布式部署方式以及流数据分析框架,可以安全存储和实时分析大量日志数据并进行可视化展示。本文的主要内容如下:1、设计了基于ELK的物联网平台日志分析系统。针对日志数量规模大、结构复杂以及日志分析实时性要求高等特点,设计了相应的功能结构和系统架构,以及系统各个模块的工作流程和具体配置。为了提高系统的可扩展性和降低系统部署的复杂度,采用基于容器的Kubernetes技术对系统各个模块进行部署以及统一管理。2、针对海量日志的聚类问题,本文将自组织映射算法SOM(Self-organizing Maps)和模糊 C 均值算法 FCM(Fuzzy C-means),结合成SOM-FCM双层聚类算法,实现了有效的聚类和降维分析。其次针对物联网平台时序日志,对一种基于深度学习的LSTM-Seq2Seq算法进行了研究,实现日志数据的异常检测,并达到了良好的检测效果。3、最后对本文设计的物联网平台日志分析系统进行了功能测试和性能测试,结果表明该系统具有良好的海量日志实时处理能力。同时SOM-FCM双层聚类模型获得了更好的聚类效果且LSTM-Seq2Seq算法在日志异常检测中具有良好的准确率。
其他文献
大气激光通信利用激光承载信息,具有带宽高、容量大、成本低、抗电磁干扰能力强等优点,是光通信领域的研究热点之一。实际的大气信道存在大气衰减、大气湍流效应,会对信号传输造成强烈干扰,而对抗湍流干扰最基本的方法就是采用高能效比的调制编码技术。PPM作为一种高能效比的调制方式,在大气激光通信中展现出显著优势,但其在传输过程中容易出现符号串扰、时钟失步等问题。因此,研究稳定高效的PPM调制解调技术对其在大气
硅(Si)基光电子技术可以将光子技术的高带宽、低功耗、高速率优点和微电子成熟的加工技术相结合实现光电集成,它具有低成本、高集成度、高可靠性的优势。目前,Si基光电探测器、Si基光调制器以及Si基光波导方面都已经成功得到广泛的应用,但是Si基激光器还有不足之处。尽管已有基于晶片键合技术的Si基光电集成的商用芯片,然而晶片键合技术存在着成本高、无法大规模生产等问题。Si基直接外延Ⅲ-Ⅴ族半导体材料技术
近年来,随着互联网、移动互联网的发展,通信等基础设施的不断完善,传统的教育机构和新兴的互联网企业都在尝试探索在线教育的最佳模式,教育逐渐从线下走向线上,在线教育行业受到大数据的影响。传统的数据分析系统已经不能满足教育大数据环境下的分析场景,特别是从海量用户数据中预测未来教育行业的发展趋势。目前国内外在线教育平台都在打造自己的数据分析系统,本论文以某在线教育平台为基础,搭建综合数据分析系统,使之能够
随着移动互联网技术的飞速发展,公众可以通过网络随意针对社会热点事件进行转发和点评,从而导致网络舆情事件爆发。近年来,舆情事件信息的主体逐渐由文本数据转变为视听化程度更高的音视频数据,由于音视频数据存在时长差异且极有可能出现超长时的情况,针对这类音频数据无法直接进行识别分析,同时现有的语音识别系统未融合舆情领域知识和音频情感因素,无法针对音视频数据进行有效的舆情研判。针对以上问题,本文设计并实现了基
随着5G、云计算等新兴技术的不断涌现,越来越多的复杂功能被加入到传统IP架构网络中。这在一定程度上导致了交换设备日渐臃肿、存储空间较为紧缺、网络拥堵现象逐渐增多,难以满足日益增长的高性能网络需求。软件定义网络(Software Defined Network,SDN)被认为是解决IP网络架构僵化、提高资源利用率并促进未来网络创新的有效途径之一。SDN网络将控制平面与数据平面解耦合,控制平面负责集中
加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题,定理证明作为人工智能领域的核心研究课题在一定程度上影响着人工智能技术的发展。随着一些交互式定理证明辅助工具Coq、Isabelle、HOLLight等的诞生,定理机器证明的研究有了更进一步的发展。Coq是国际上广泛使用的一个交互式定理证明工具,它基于归纳构造演算,有着强大的数学模型和良好的扩展性,更为重要的是,基于C
近年来,深度学习作为一种新兴的信息技术广泛应用于各个领域。在某种确定的深度学习模型下,神经元连接处的参数大小决定了模型优劣,为了提高模型的准确性,在训练过程中需要对参数取值进行优化,其中涉及到的优化问题主要是对经验风险函数进行最小化求解。随着数据规模的不断扩大,传统的一阶优化算法已经不能有效解决经验风险最小化问题。随机算法是指在迭代的过程中随机选择一个或部分样本的损失函数梯度近似损失函数全梯度,以
在癌症发病率和死亡率逐年攀升的今天,人们对健康问题越发关注,对于提升肿瘤检测及时性和准确率的希望也越发迫切。随着现代计算机技术的迅速发展,卷积神经网络成为国内外专家学者的研究热点,将其的研究成果应用于医疗领域,帮助医生对肿瘤做出高效而准确的诊断,这具有着重要的社会意义和实用价值。由于不同身体部位和不同检查方式中的肿瘤具有不同的形态,本文针对核磁共振成像的脑胶质瘤进行了分割模型的研究,并搭建Web系
大数据时代下各行各业的数据呈现爆炸式增长,变得越来越庞大和复杂,尤其在土地开发产业链中,由于从土地到楼盘这一产业链上的时间间隔较长,各类信息度量标准不统一,空间位置信息也在不断地更新等因素,造成土地开发产业链中各类数据比较孤立且冗余度高,难以聚合和共享,无法发挥数据隐含的价值。因此,为了能合理和高效地利用这些数据,对设计一套集数据获取、数据管理及关联分析为一体的应用系统的需求越来越迫切。为了解决土
目前,我国大多数公司的经营模式还是维持在从上而下的多层级的管理模式,而这种方式很容易导致员工失去工作积极性,整个管理模式非常僵化,上层领导对于业务了解不够透彻,决策下行困难,基层员工缺乏激励,工作完成不积极,导致整个业务流运转缓慢,效率低下,公司竞争力弱。可以说,优化管理模式是很多公司亟待解决的问题。本文通过对W公司的阿米巴经营模式组织变革为例,通过文献研究法、案例研究法、访谈法和标杆分析法等方法