语音识别的环境噪音抑制研究

来源 :广东工业大学 | 被引量 : 6次 | 上传用户:yangy1225
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文主要的研究内容是基于噪音环境下的语音识别性能的改进研究。语音识别是指利用计算机通过识别和理解把人类的语音信号转变为相应的文本或命令技术。然而,大多数语音识别系统都只适合于识别安静环境中的语音,当它们应用于噪音环境中时,性能却大大降低。因此,在噪音环境下进行语音识别是现阶段语音识别发展过程中的一个难点。虽然如此,但它在我们这种高速发展的信息时代却有着可观的实用价值。作者从语音识别的端点检测进行了研究,搭建了包括语音采集、噪音合成、特征提取,直到产生识别结果的在内的语音识别软件系统平台。在该平台的基础上,做了下面的改进研究:(1)提出一种端点检测的新算法:研究表明,即使在安静的环境中,语音识别系统一半以上的识别错误来自端点检测器。因此,作为语音识别系统的第一步,端点检测的重要性是不容忽视的,尤其是噪音环境下语音的端点检测,它的准确性很大程度上直接影响着后续的工作能否有效进行。所以,本文给出了一种基于线性预测系数(LPC)距离算法的端点检测方案,可以有效的解决强噪音环境下的端点检测问题。(2)基于新算法的改进:在强噪声情况下,LPC距离算法可以有效抑制噪音,可是它也有自己的不足之处,即不能在高信噪比的条件下进行有效的端点检测,而这恰恰是传统算法的长处,所以作者就考虑将两者结合起来,将两者的参数进行组合,实验证明,这种方法可以较大范围地满足噪音环境下的端点检测要求,进而可以更好地抑制环境噪音。
其他文献
调光系统广泛应用于剧场、体育馆、电视台演播厅、音乐会、大型LED广告牌等场所。灯光的效果对整个舞台的布景、运动员水平的发挥、广告效果以及音乐会场气氛都有很大的影响
随着数字通信网络技术与多媒体技术的迅速发展,越来越多的多媒体作品通过网络的形式发布,使信息的发布和传输变得方便快捷。但数字作品具有极易被非法复制和篡改的特性,任何人都
无线传感器网络由大量的微型网络传感节点构成,这些节点被用于测试、传感、收集、处理被观测对象,节点收集的信息被发送到远端用户。对这样大量长时间部署的节点的应用很可能
司法部门的信息化建设对于提高工作效率、加强司法公正是十分重要的。法院综合管理信息系统采用以网络技术为支撑平台,以“沟通、协作、协调”为基本理念,通过对司法部门的信息
随着数据通信的飞速发展,相对于有线网络,无线网络已经有着越来越广泛的应用。但是,虽然无线网络有着灵活性的优势,但在性能方面和有线网络还存在一定的差距,例如速率、覆盖范围、
网格系统是将地理上分布不同、系统异构、性能各异的各种资源,通过高速互连网络连接起来形成的广域范围的资源共享和协同计算环境。网格计算技术的出现,使得我们可以突破地理位
随着世界网络化和数字化的快速发展,搜索引擎成为网络用户不可缺少的一部分。基于内容的图像检索由于语义鸿沟,检索出来的图像并不能满足用户的需求。无论使用哪一种特征(颜色
近年来,随着信息技术的发展与普及,在智能控制、商务、金融、实验科学研究、信息服务等应用领域提出了一系列新的复杂智能决策问题,它们具有海量数据、包含随机因素、要求环境适
人类获取客观世界信息的主要途径是图像,而图像在获取和传输过程中容易受到各种各样的干扰,如光学图像容易被高斯白噪声干扰。噪声会大大降低图像的分辨率,严重影响图像的后续处
由于计算机的迅速普及和互联网的广泛流行,产生了数据和信息的汪洋大海。要想从中获取隐藏、有用的知识,就要使用各种学习算法和方法。而许多学习算法要求输入的属性值是离散的