论文部分内容阅读
本论文主要的研究内容是基于噪音环境下的语音识别性能的改进研究。语音识别是指利用计算机通过识别和理解把人类的语音信号转变为相应的文本或命令技术。然而,大多数语音识别系统都只适合于识别安静环境中的语音,当它们应用于噪音环境中时,性能却大大降低。因此,在噪音环境下进行语音识别是现阶段语音识别发展过程中的一个难点。虽然如此,但它在我们这种高速发展的信息时代却有着可观的实用价值。作者从语音识别的端点检测进行了研究,搭建了包括语音采集、噪音合成、特征提取,直到产生识别结果的在内的语音识别软件系统平台。在该平台的基础上,做了下面的改进研究:(1)提出一种端点检测的新算法:研究表明,即使在安静的环境中,语音识别系统一半以上的识别错误来自端点检测器。因此,作为语音识别系统的第一步,端点检测的重要性是不容忽视的,尤其是噪音环境下语音的端点检测,它的准确性很大程度上直接影响着后续的工作能否有效进行。所以,本文给出了一种基于线性预测系数(LPC)距离算法的端点检测方案,可以有效的解决强噪音环境下的端点检测问题。(2)基于新算法的改进:在强噪声情况下,LPC距离算法可以有效抑制噪音,可是它也有自己的不足之处,即不能在高信噪比的条件下进行有效的端点检测,而这恰恰是传统算法的长处,所以作者就考虑将两者结合起来,将两者的参数进行组合,实验证明,这种方法可以较大范围地满足噪音环境下的端点检测要求,进而可以更好地抑制环境噪音。