具可乘白噪声非自治时滞二阶格点系统随机吸引子及其指数稳定性

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:hh139999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究具可乘白噪声非自治时滞二阶随机格点系统随机吸引子的存在性、单点性及其指数稳定性.本硕士学位论文主要分为三章:第一章:首先概述本文研究问题的背景及主要研究内容简述,然后给出本文需要用到的预备知识.第二章:给出由有限闭区间到有限个无穷序列加权空间的乘积空间的所有连续函数构成的空间上的连续余圈和局部耦合非自治随机时滞格点系统的随机吸引子的存在性条件.第三章:考虑具可乘白噪声非自治时滞随机二阶格点系统随机吸引子的存在性、单点性、指数稳定性和关于时滞趋于零时的收敛性.首先,我们利用O-U过程将具可乘白噪声的格点系统转化为无白噪声的格点系统,其解在无穷序列空间上生成连续余圈.其次,我们估计转化后的系统的解的界和尾部,得到随机吸引子的存在性.再次,我们验证随机吸引子是无穷序列空间中的单点集簇且指数拉回吸引该系统的所有解.最后,进一步验证单点集随机吸引子关于时滞趋于零时的收敛性.
其他文献
本学位论文主要研究一类加权Lane-Emden方程组稳定正解的不存在性,其中Ω(?)RN,0
图的线性k-荫度是使得图G可以分解为m个线性k-森林的最小整数m,用lak(G)来表示.显然,对任意大于等于1的k,有lak(G)≥lak+1(G).特别地,la1(G)就是图G的边色数χ’(G),la∞)G)就是图G的线性荫度la(G).在1982年,Habib和Peroche提出了线性k-荫度的概念,并且提出了以下具有挑战性的猜想:令G是一个有n个点的图,k是一个大于等于2的整数.则本文主要探
复杂网络理论广泛用于系统的优化、传染病的防控、网络动力学等领域,其中H型指数作为复杂网络的重要分支对网络优化、避灾、控制等意义重大.近年来,各种H型指数被相继提出,极大地丰富了网络节点重要性识别方向的理论,然而综合考虑各种因素而提出的H指数却较少.因此本文提出了一种新的有向加权h指数(简记为dw-(?)指数),用于度量有向加权网络中节点的重要性以及识别电网中线路的脆弱性.Dw-(?)指数综合考虑网
令G是一个有限简单无向图.用V(G),E(G),Δ(G)和δ(G)分别表示图G的顶点集、边集、最大度和最小度.令g1,g2,…,gm表示m个图类.若能把G的顶点集合V划分为m个不交的子集V1,V2,…,Vm,使得对于每个1≤i≤m,由Vi导出的子图G[Vi]属于图类gi,则称G有一个(g1,g2,…,gm)-分解.为了方便,用F,L和Fd分别表示森林、独立集和最大度至多为d的森林.图G的点荫度va
谱极值图论问题主要研究与图的各种矩阵表示,包括邻接矩阵、拉普拉斯矩阵或无符号拉普拉斯矩阵等的谱性质,特别是不含有特殊子结构的图类中的谱半径极值问题.近年来,有关图的邻接谱、拉普拉斯谱和无符号拉普拉斯谱等的极值问题得到了广泛研究.为了追踪邻接矩阵到无符号拉普拉斯矩阵的变化,Nikiforov提出了研究邻接矩阵和度对角矩阵的一个线性凸组合,即矩阵Aα(G)=αD(G)+(1-α)Λ(G),α ∈[0,
本文主要研究了BiHom-Hopf代数上的L-R smash积,共分为三部分.第一部分介绍了 BiHom-L-R smash积的定义,并给出了 BiHom-L-R smash积和张量余积形成BiHom-双代数的充分必要条件.第二部分研究了 BiHom-L-R smash积在有限维半单BiHom-Hopf代数(H,αH,βH,ψH,ωH)上的Maschke-型定理.第三部分讨论了 BiHom-子代数
本文主要研究辛临界曲面上K(?)hler角α的上界估计.对于K(?)hler曲面M中闭的两维β辛临界曲面∑,将α定义为∑上的K(?)hler角.若存在q>3,使得泛函Lq(∑):=∫∑1/cosqαdV∑有界,通过Morse迭代的方法,则可得到K(?)hler角α的一个上界估计.现已有q>4时对α的一致上界估计,本文的结果推广了 q的范围.全文共分为三章,具体如下:第一章:介绍了 K(?)hler
本文主要考虑奇异扰动的二阶非自治格点系统的全局拉回吸引子关于二阶项系数的上半连续性.第一章,首先介绍本文考虑问题的研究背景,其次介绍了本文的主要工作,最后给出了需要用到的预备知识.第二章,证明奇异扰动的二阶非自治格点系统和对应的一阶非自治格点系统在一定条件下分别存在全局拉回吸引子.第三章,考虑二阶非自治格点系统的拉回吸引子在Hausdorff半距离下关于二阶项系数的上半连续性.(ⅰ)研究二阶项系数
本文研究三维不可压轴对称磁流体(MHD)方程组解的适定性,主要利用能量办法研究速度向量与磁场向量的旋度分量满足一定时空条件时解的正则性问题.全文主要分为四章.第一章,简单介绍经典三维不可压MHD方程组的研究背景及研究现状.第二章,介绍直角坐标系与柱坐标系之间的联系,然后将直角坐标系下的MHD方程组经过柱坐标变换,推导出轴对称MHD方程组.第三章,主要对向量u,B的旋度分量r3ωθ,r3nθ进行能量
在常微分方程的研究中,方程是否出现Smale马蹄意义下的混沌是动力系统关心的问题.通常利用一阶Melnikov函数的简单零点来判定鞍点稳定流形和不稳定流形的横截相交性,从而确定系统的混沌动力学.一个重要的问题是:如果一阶Melnikov函数退化,即它恒为零,则如何判断系统的混沌动力学?针对这个问题,一般利用更高阶Melnikov函数进行推导,从而判定系统的混沌动力学.目前,具有同宿轨道的方程在周期