图的顶点森林分解

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:yokuchan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
令G是一个有限简单无向图.用V(G),E(G),Δ(G)和δ(G)分别表示图G的顶点集、边集、最大度和最小度.令g1,g2,…,gm表示m个图类.若能把G的顶点集合V划分为m个不交的子集V1,V2,…,Vm,使得对于每个1≤i≤m,由Vi导出的子图G[Vi]属于图类gi,则称G有一个(g1,g2,…,gm)-分解.为了方便,用F,L和Fd分别表示森林、独立集和最大度至多为d的森林.图G的点荫度va(G)为图G的最小顶点划分数使得任一划分点集的导出子图都是一个森林.这一概念由Chartrand,Kronk和Wall于1968年首次提出.他们证明了对于任意图G,有va(G)≤[△(G+1)/2].此外,若G是一个平面图,则va(G)≤3.2008年,Raspaud和Wang从染色的角度给出了点荫度的等价定义.图G的k-森林染色是指存在映射π:V(G)→{1,2,…,k},使得每种颜色的点导出子图都是一个森林.G的点荫度是指G有一个k-森林染色的最小正整数k.若对任意的顶点色列表配置L={L(v)| v ∈V(G)},图G都有一个森林染色π,使得对任意一个顶点v∈ V,都有π(v)∈ L(v),则称G是L-森林可染的.若对于任意列表|L(v)|≥ G是L-森林可染的,则称G是k-列表森林可染的.G的列表点荫度是指G是k-列表森林可染的最小正整数k,用val(G)表示.本文,我们着重研究环面图的顶点森林分解问题,共分为三章.在第一章中,首先给出与本文相关的基本概念,然后概述该领域已有的研究成果,并给出本文的主要结果.在第二章中,我们研究了环面图的列表点荫度问题,证明了每个不含K5和6-圈的环面图G满足val(G)≤ 2.我们将给出例子说明K5和6-圈这两个条件缺一不可.在第三章和第四章中,我们考虑最大度受限制的森林分解问题,证明了每个不含4-圈和6-圈或不含4-圈和7-圈的环面图都具有(F,F3)-分解.
其他文献
近几十年来,随着科学技术的发展和理论研究的深入,国内外学者分别从理论分析和数值模拟两方面来对不同时间尺度下耦合系统的动力学行为进行了深入研究。本文主要研究了周期激励下Duffing-van der Pol系统的簇发振荡行为,研究内容如下:在一个Duffing-van der Pol系统中引入一个周期激励项,采用快慢动力学分析方法研究此系统的分岔行为。经过分析,得到了此系统的fold分岔集和Hopf
本论文研究了由列表染色推广而来的三种染色相关的问题:串并联图的强分数选择数、含至多两个交叉的图的DP-染色、局部平面图的在线DP-染色.一个图G的强分数选择数是指实数r的下确界使得对于任意正整数m,图G都是([rm],m)-可选的.一个图类(?)的强分数选择数是指图类(?)中所有图的强分数选择数的上确界.[36]和[17]中详细研究了平面图的强分数染色数.令(?)为平面图类,对于正整数k,令Pk表
本文主要研究具有临界耗散的准地转方程解的全局适定性、全局吸引子的存在性及其有限维数估计.全文分为四章:第一章,我们介绍了准地转方程的背景、研究现状、预备知识及本文所得到的主要结果.第二章,我们首先利用连续性方法证明解的局部适定性.然后将采用分数阶Laplacian耗散算子的下界估计和Only Small Shocks性质,证明方程解的全局适定性.第三章,我们将采用正则性抬升技巧证明解在H1(R2)
令G是一个有限简单图.用V(G)和E(G)分别表示图G的顶点集和边集.若有一个映射f:V(G)→{1,2,...,k},满足对(?)xy ∈E(G)都有f(x)≠f(y),则称f是G的一个正常k-染色.若G有一个正常k-染色,则称G是k-可染的.图G的色数是指使得G为k-可染的最小正整数k,记为χ(G).若给图G中的每个点v一个颜色配置L(v)且|L(v)|≥k,则称L(v)为图G的一个k-列表配
本文在Banach空间中主要研究不动点问题和变分不等式系统问题,建立了关于渐近非扩张映射的新的的粘性迭代算法来逼近不动点问题和变分不等式系统问题的解,并在一定的参数条件下得到了迭代算法生成的序列的强收敛定理.应用其主要定理解决标准约束凸优化问题,在一定程度上推广和改进其他学者的一些相关结果.文中研究主要内容分为如下四章:第一章,在不动点理论的基础上叙述了变分不等式问题与广义变分不等式系统问题的研究
令G是一个有限无向简单图.用V(G)和E(G)分别表示图G的顶点集和边集,简记为V和E.若一个森林的每个连通分支都是路,则称该森林为线性森林.若一个森林的每个连通分支都是长至少为k的路,则称该森林为线性k-森林.图G的边分解是指将G分解成子图G1,G2,…,Gm,使得E(G)=E(G1)∪…∪(Gm),且对任意i≠j,有E(Gi)∩E(Gj)=(?).图G的线性荫度la(G)是可以将G边分解为m个
光与物质之间的相互作用是自然界最基本的现象之一,是我们理解多种物理过程的基础。Jaynes-Cummings(JC)模型和Rabi模型是描述二能级系统与光场相互作用的最基础模型。我们研究由单模的电磁谐振器和二能级系统相互作用形成的腔量子电动力学系统。近几年,出现一种可以用量子模拟晶格原子系统和光场相互作用的单个腔量子电动力学系统新平台。目前已经有一些文章使用JC晶格模型研究Mott绝缘相-超流体相
本学位论文主要研究一类加权Lane-Emden方程组稳定正解的不存在性,其中Ω(?)RN,0
图的线性k-荫度是使得图G可以分解为m个线性k-森林的最小整数m,用lak(G)来表示.显然,对任意大于等于1的k,有lak(G)≥lak+1(G).特别地,la1(G)就是图G的边色数χ’(G),la∞)G)就是图G的线性荫度la(G).在1982年,Habib和Peroche提出了线性k-荫度的概念,并且提出了以下具有挑战性的猜想:令G是一个有n个点的图,k是一个大于等于2的整数.则本文主要探
复杂网络理论广泛用于系统的优化、传染病的防控、网络动力学等领域,其中H型指数作为复杂网络的重要分支对网络优化、避灾、控制等意义重大.近年来,各种H型指数被相继提出,极大地丰富了网络节点重要性识别方向的理论,然而综合考虑各种因素而提出的H指数却较少.因此本文提出了一种新的有向加权h指数(简记为dw-(?)指数),用于度量有向加权网络中节点的重要性以及识别电网中线路的脆弱性.Dw-(?)指数综合考虑网