论文部分内容阅读
丁酸和丁醇是重要的化学品,被广泛应用于化工、食品和医药等领域,目前主要以石油为原料通过化学法合成。由于化石能源的逐渐枯竭和环境污染问题的日益严重,利用微生物发酵可再生生物质生产生物基化学品和生物燃料受到越来越多的关注。然而,由于微生物转化存在底物成本高、副产物的存在导致目标产物浓度和得率低等缺点,通过微生物发酵生产丁酸和丁醇无法与化学合成法竞争。烟酰胺腺嘌呤二核苷酸(Nicotinamide adenine dinucleotide,NADH)是丁酸和丁醇代谢过程中的关键辅因子,许多研究表明通过外源添加电子载体或使用较高还原态的底物如甘油或甘露醇能强化NADH供给水平,能够提高还原性产物(如乙醇、丁醇、1,3-丙二醇和丁酸)的发酵水平。因此,本研究拟通过选取来源丰富、可再生的廉价底物海带作为甘露醇的来源,并通过代谢工程和过程工程手段强化酪丁酸梭菌(Clostridium tyrobutyricum ATCC 25755)对甘露醇和海带水解液的利用,以期为生物基丁醇和丁酸的经济高效生产提供借鉴。研究结果表明,以1:2或2:3的甘露醇/葡萄糖为混合底物,能有效提高Clostridium tyrobutyricum ATCC 25755丁酸的得率(0.44-0.46 g/g)和选择性(100%),副产物乙酸的消除有助于降低后续的分离纯化成本。为进一步提高丁酸发酵的经济性,以经稀酸预处理和酶水解后的海带水解液(添加葡萄糖调节使甘露醇与葡萄糖的质量比为1:2)为底物进行分批发酵,丁酸的选择性和得率分别达到100%和0.42 g/g,该研究为生物基丁酸的生产提供了新思路。在C.tyrobutyricum ATCC 25755中过表达来自Clostridium acetobutylicum ATCC 824的双功能醇醛脱氢酶(aldehyde/alcoholdehy drogenasegenes,adh E2)能显著提高其甘露醇利用能力,并将其改造成丁醇生产菌株,工程菌命名为Ct-p MA。以甘露醇为底物时,工程菌Ct-p MA的丁醇产量和得率分别为12.44 g/L和0.26 g/g,分别较以葡萄糖为底物时提高117%和117%。在此基础上,为提高菌株对产物丁醇的耐受性,分别研究了过表达来自C.tyrobutyricum ATCC 25755、C.acetobutylicum ATCC 824和Deinococcus wulumuqiensis R12的热激蛋白Gro ESL以及来自D.wulumuqiensis R12的热激蛋白Dna K对Ct-p MA丁醇发酵的影响,结果表明过表达来自D.wulumuqiensis R12热激蛋白的工程菌Ct-p MA12G(Gro ESL)和Ct-p MA12D(Dna K)的丁醇耐受性明显提高。不同海带预处理水解液发酵结果表明,海带超声预处理的效果要明显优于海带酸水解和酶水解。当以浓缩~1.3倍的海带超声提取液为底物时,工程菌Ct-p MA12G的丁醇产量和得率分别为11.13 g/L和0.31 g/g,分别较Ct-p MA提高23.53%和19.23%。通过pH优化显著提高了工程菌Ct-p MA的甘露醇利用能力、丁醇产量以及产物中溶剂与酸的比值,并确定了甘露醇发酵的最佳p H为6.5。为了进一步提高丁醇得率和生产速率,利用CSIRPR基因编辑技术将cat1替换为adh E2阻断副产物丁酸合成途径,并通过纤维床固定化工程菌进行重复分批发酵。工程菌Ct-Δcat1::adh E2的丁醇产量、得率和生产速率分别稳定在>18 g/L、~0.3 g/g和~0.80 g/L·h。选取浓缩~1.5倍的海带提取液为底物进行发酵,获得最佳的丁醇产量(14.99 g/L)、得率(0.39 g/g)和生产速率(0.25 g/L·h),证实了以海带为原料生产丁醇可行性。