论文部分内容阅读
随着下肢运动功能障碍患者数量日益增多和临床康复治疗愈发迫切,近年来下肢康复机器人的研究与发展受到国内外学者的广泛关注,如何使下肢康复机器人具备自适应、人机协作和柔性控制等效果是当前亟待解决的难题。在此背景下,本文设计了一种基于套管式柔索驱动的平地行走下肢康复外骨骼机器人,并对其进行了理论分析和仿真研究,主要工作如下:(1)利用Xsens MVN惯性运动捕捉系统采集了正常人体行走步态信号,在对人体解剖学结构研究的基础上,建立了人体下肢的正运动学和逆动力学模型;考虑到地面力对下肢关节力矩的影响,推导并基于非保守Lagrange方程解算了行走下肢关节力矩;通过Simmechanics进行了逆动力学仿真,仿真结果验证了关节力矩解算的准确性,为理论分析和仿真研究提供了数据来源。(2)依据下肢运动机理,提出了套管式柔索驱动下肢康复外骨骼机器人的总体方案;根据关节运动范围与成年人身高尺寸比例,完成了可调节型外骨骼与移动型台架的结构设计、柔索驱动关节的模块化构型设计以及驱动机构设计,确定了套管式柔索的连接方式,为分析研究奠定了模型基础;借助ANSYS Workbench对关键零部件进行了静力学分析,校核结果表明结构设计能够满足强度要求。(3)分析了柔索驱动关节的理论模型,通过位置逆解分析得到了柔索长度与关节角之间的变化规律;在力学分析的基础上,研究了柔索拉力分配问题,并利用P-范数近似与正交补方法实现了柔索拉力的优化求解;采用微元法分析了定曲率与变曲率套管摩擦力对柔索驱动的影响;设计了一种结构简单紧凑的柱型变刚度模块,并通过刚度分析验证了设计预期,为仿真研究提供了理论支撑。(4)在ADAMS中搭建了下肢康复外骨骼机器人的虚拟样机,并分别基于柔索长度变化量与拉力进行了驱动仿真实验,通过比较关节角变化情况表明了模型设计的合理性与理论分析的正确性;根据患者被动行走康复训练特点,设计了自适应迭代学习控制系统,利用Simulink实现了联合仿真控制实验,结果验证了该控制方法对关节期望运动轨迹的跟踪性能与下肢康复外骨骼机器人的可控性。