【摘 要】
:
含硫有机化合物广泛存在于各种天然产物以及有机功能分子中,碳硫键的构建方法一直是有机合成的重要内容。本论文以硫单质作为硫源,研究了硫单质与炔基酮的反应,合成了烯基硫醚类化合物与噻吩衍生物。主要研究内容如下:1.炔基酮,碘苯和硫单质在铜催化下反应合成烯基硫醚化合物。研究了炔基酮,碘苯和硫单质的三组分反应,对反应温度、催化剂、碱和溶剂等反应条件进行了优化,并且对底物适应性进行了研究,以最高92%的产率合
论文部分内容阅读
含硫有机化合物广泛存在于各种天然产物以及有机功能分子中,碳硫键的构建方法一直是有机合成的重要内容。本论文以硫单质作为硫源,研究了硫单质与炔基酮的反应,合成了烯基硫醚类化合物与噻吩衍生物。主要研究内容如下:1.炔基酮,碘苯和硫单质在铜催化下反应合成烯基硫醚化合物。研究了炔基酮,碘苯和硫单质的三组分反应,对反应温度、催化剂、碱和溶剂等反应条件进行了优化,并且对底物适应性进行了研究,以最高92%的产率合成了一系列2,3-二硫代烯基酮类化合物;并且研究了炔基酮、硫单质和1,2-二碘苯的三组分反应,以最高93%的产率合成了一系列苯并1,4-二硫六环类化合物。该反应使用了无臭无味且性质稳定的硫单质作为硫源,具有立体选择性好、操作简单且可以扩大至克量级反应等优点。产物结构经~1H NMR、13C NMR和HR MS等表征,化合物(Z)-1-(对甲氧基苯基)-3-苯基-2,3-二(对甲基苯硫基)丙-2-炔-1-酮的结构经过X-Ray单晶衍射分析确证,炔基酮的加成反应为顺式加成。2.1,6-二炔-3-酮与硫单质反应合成茚酮并[1,2-c]噻吩类化合物。研究了碱促进下的1,6-二炔-3-酮和硫单质的反应,对碱、溶剂、反应物当量比以及温度等条件进行了优化,并对底物适应性进行了具体的研究,以最高87%的产率合成了一系列不同结构的茚酮并[1,2-c]噻吩化合物。该反应使用了无臭无味且性质稳定的硫单质作为硫源,具有无需金属催化剂、条件简单、底物适应性较好等优点。为噻吩多环类化合物的合成提供了一种新方法。机理研究表明,该反应可能经历了一个自由基历程。产物结构经~1H NMR、13C NMR和HR MS等表征。
其他文献
由于可以有效地减少Haber-Bosch法产氨所带来的能源消耗和环境危机,电化学固氮(eNRR)逐渐成为了近些年的研究热潮。目前来看,该方法的核心在于寻找高效、稳定的固氮催化剂。因具有独特的电子结构和力学性能,二维材料(2D)有望成为固氮催化剂的主要候选者。通过基于密度泛函理论的第一性原理计算,本论文主要研究了2D硒化镓、过渡金属团簇负载石墨炔(GDY)等催化体系电化学固氮的可能性,并进一步通过缺
现代社会的快速发展致使全球能源消耗与日俱增,能源危机愈发严峻。因此,开发绿色能源迫在眉睫。氢能因具有高燃烧值、绿色、可再生等优点成为最有潜力的清洁能源,电解水制氢技术被认为是最有前景的制氢方法之一。然而,阳极析氧反应(OER)具有较高的反应能垒限制了电解水制氢技术的发展。尿素氧化反应(UOR)因其极低的理论氧化电位,能有效降低能耗,还能降解富含尿素的污水,减轻环境污染,有潜力替代OER来提高电解水
核心素养是当今国际科学教育共同追求的目标,关注学生核心素养的培养是目前世界各国基础教育理论研究和实践变革的重大趋势。“模型认知”素养作为化学学科核心素养的重要组成部分,既是育人价值的集中体现,也是学生应具有的关键能力。在对国内外模型、建模与模型认知等相关研究进行梳理后,本研究以国际核心素养框架、大型测评中模型、建模和模型认知的概念框架和《普通高中化学课程标准(2017年版)》中模型认知水平为基础,
当前,大力发展清洁能源,创造更加宜居的生活环境已经成为全社会的共识,通过如析氧反应、析氢反应、二氧化碳电还原反应等清洁反应获取氢能以及高附加值工业产品等无疑是向可持续发展目标迈进的一条重要道路。现如今对于上述几个反应的电极材料的研究正在蓬勃发展,人们希望得到尽量接近热力学电位的催化材料以减少电解过程中的能量损耗。过渡金属及其化合物材料由于其丰富的轨道电子展现出了良好的催化性能,其中尤以铁、钴、镍基
开发高效的能源转换、储存和运输技术是实现未来能源可持续发展的关键。具有高质量能量密度的氢气被认为是理想的清洁能源载体。电化学分解水产氢是一种非常有前景的能源转换和制氢策略。电解水反应主要由阴极的氢气析出反应(HER)和阳极的氧气析出反应(OER)这两个半反应组成。尽管理论上仅需1.23V的电压即可实现电化学水裂解,但由于迟缓的HER和OER动力学,在实际应用过程中水分解电解槽需要更高的电压去驱动反
可充电电池在生产生活中大量应用,一些近年来发展的新型电池备受关注。锂硫电池具有高的能量密度,可作为长续驶里程电动汽车动力电池,但单质硫的导电率低、体积变化大和充放电过程中多硫化物的穿梭效应等问题严重制约其发展与应用。此外,可充电水系锌离子电池极有希望应用在可穿戴设备,虽然其拥有价格低廉且对环境友好的优点,但也存在着电池电压范围低、电极材料尚不完善、可穿戴设备应用过程中的柔性环境带来的不稳定等一系列
电致化学发光(Electrogenerated chemiluminescence,ECL)因其高灵敏度、低检测限、宽线性范围、仪器操作简单和高信噪比等优势吸引了人们广泛的关注和研究。该技术已广泛应用于金属离子检测、环境监测、医学诊断、免疫测定、药物分析、食品检测等许多领域。目前,ECL常用的发光材料主要有:联吡啶钌及其衍生物、鲁米诺及其衍生物、纳米材料等等。稳定高效的ECL试剂的合成和应用一直是
呋喃和吡喃等含氧杂环化合物广泛存在于天然产物和合成化学品中,表现出多种生物和药理活性,在药理学、催化和材料科学等领域中具有广泛的应用。本文总结了近年来关于吡喃、呋喃等含氧杂环化合物的合成方法,并发展了基于苯丙炔胺类化合物与环己二酮及2-羟基/氨基-1,4-萘醌化合物的1,4-共轭加成/分子内环化串联反应,发展了系列结构新颖的五元/六元含氧杂环化合物的合成新方法。具体研究内容如下:(1)开展了碱金属
本论文主要开展了β-二亚胺稀土-镍杂核配合物的合成、结构表征及其反应性研究,其主要内容包括:1.通过β-二亚胺稀土金属双烷基化合物LnacnacLn(CH2SiMe3)2(THF)(Ln=Y(1,2),Lu(3))与二苯基膦甲基苯胺(Ph2PCH2NHPh)和二苯基膦苯胺(Ph2PNHPh)的烷烃消除反应,合成得到β-二亚胺稀土金属胺基配合物LnacnacLn(Ph2PCH2NPh)2(Ln=Y(
电化学水分解技术是一种可以替代传统化石燃料的清洁、可持续的氢气发电技术。这对缓解能源危机、发展可再生能源以及改善环境等问题具有十分重要的意义。析氧反应(OER)和析氢反应(HER)作为两个半反应,在动力学上属于慢电子转移反应,提高电催化过程中的电子转移效率是电化学催化和储能领域的主要挑战。因此,设计出高效电催化剂来增加反应过程中的电子转移效率,是降低电化学水分解过电位,并提高电催化效率的关键。当前