【摘 要】
:
近年来,随着互联网和移动终端的迅速发展,各大互联网公司为抢占有限的用户资源,推销自己产品和服务,纷纷采用各种推荐算法进行信息或物品推荐。序列推荐算法作为推荐算法领域的子领域,在电商购物平台应用尤其广泛。序列推荐算法的主要任务是通过用户与平台的交互序列,得到当前序列偏好,进而预测用户下一次可能交互的物品,提供给用户合适的推荐列表。当前,研究人员开始将门控图神经网络应用于序列推荐当中,但是现有研究工作
论文部分内容阅读
近年来,随着互联网和移动终端的迅速发展,各大互联网公司为抢占有限的用户资源,推销自己产品和服务,纷纷采用各种推荐算法进行信息或物品推荐。序列推荐算法作为推荐算法领域的子领域,在电商购物平台应用尤其广泛。序列推荐算法的主要任务是通过用户与平台的交互序列,得到当前序列偏好,进而预测用户下一次可能交互的物品,提供给用户合适的推荐列表。当前,研究人员开始将门控图神经网络应用于序列推荐当中,但是现有研究工作仍然存在以下两个问题:一是不能很好利用序列中物品的位置信息,物品的位置信息是序列信息的一大重要特征,位置信息利用的缺乏将导致无法得到较好的序列偏好的特征表示;二是没有有效利用全序列信息,全序列信息指由海量的序列信息共同构成的信息集合,全序列信息蕴含物品之间深层次的联系,具有内容多、信息杂的特点。本文以电商购物平台为背景,针对序列推荐任务,提出融合物品信息的增强的门控图神经网络模型(IF-BGGNN)。本文的主要研究如下:(1)针对序列内部位置信息利用不足的问题,提出增强的门控图神经网络模型(BGGNN)。BGGNN主要用于捕获序列信息的偏好表示,其主要思想是以门控图神经网络模型为基础,在输入序列转化为图的过程中增加物品节点信息自循环,采取信息流向偏重的策略,通过注意力机制,得到序列的长期和短期偏好,同时融入序列内部位置信息,最终拼接得到序列偏好特征表示。(2)针对全序列信息利用不足的问题,提出全序列物品特征提取模型(IFEM)。IFEM主要用于从全局序列中捕获物品之间的相互联系,发掘得到物品的一般特征,其主要思想是对全部序列信息处理,提取出物品的全序列物品关系集,通过注意力机制学习物品之间的关系表示,最终得到物品的一般特征表示。(3)提出的融合物品信息的增强的门控图神经网络模型(IF-BGGNN),该模型将物品的一般特征表示融入序列偏好特征表示中,得到混合的序列偏好特征表示,并以此作为推荐依据。
其他文献
阿尔茨海默症(AD)的神经影像学自动诊断近年来引起大量关注,但至今尚未有较好的技术手段准确地诊断识别出相关疾病,由于图像识别技术的发展与突破,阿尔茨海默症图像诊断技术面临以下几个问题:(1)传统医学图像诊断技术需要人为提取图像特征,再使用机器学习分类算法,具有较强主观性;(2)AD患者脑部影像具有三维空间的特征,传统二维图像识别算法无法较好提取到大脑中的病理特征。本文针对以上问题,本研究由图像特征
随着无人机技术的不断进步,多无人机协同对地任务规划在现代战争中的地位日益凸显,其规划结果优劣将直接影响无人机整体作战效能。多无人机协同对地任务规划包含两阶段:第一阶段任务分配,即给无人机合理的指派任务;第二阶段航迹规划,即给无人机规划出能安全抵达对地任务目标点的可飞航迹。本文结合某无人机仿真平台的研究,对相关问题展开研究,主要工作内容如下:(1)针对传统合同网算法在解决多无人机任务分配中存在的资源
目标追踪作为现实意义较大的一个视觉算法研究板块,其中长时间的单目标追踪算法则是该板块一个十分重要方向,此前相关算法的解决方式主要以传统滤波为主,近年来,以深度学习为基础的长时间单目标追踪算法性能,正渐渐赶超传统滤波方法,尽管如此,目标追踪任务的难点始终没有得到很好的解决,其中以相似目标的追踪漂移、目标闪入和闪出视野内、目标运动模糊、目标视角和尺度随着追踪时间的不断变化等难点最为突出,进一步地,长时
近年来,基于探针的全局光照算法因其简单高效的特点被广泛应用于实时渲染应用中,如虚拟现实、游戏以及CAD辅助设计等。其基本思想是,通过在场景中离散放置探针对光照信息进行预计算,然后在运行时查询着色点附近若干个探针存储的光照信息进行插值计算而生成全局光照效果。然而,该类算法依赖于逐探针预计算光照信息,导致其难以实时响应动态光照变化。其中,光场探针算法能够生成高质量的间接漫反射和光泽反射效果,但需要逐探
随着科技的不断进步,人们的生活也开始步入智能时代。在交通出行方面,与我们最密切相关的就是辅助驾驶和自动驾驶技术。这些技术不仅能够提高我们的出行效率,也能够保障我们的出行安全。因此,对智能交通技术进行研究有着十分重要的意义和应用价值。在道路交通系统中,交通标志是重要的组成部分。不论是辅助驾驶还是自动驾驶,都必须要解决好交通标志检测的问题。但是在实际应用过程中,由于交通标志主要存在于室外,环境较为复杂
随着空中作战在现代战争中占据越来越重要的地位,空战决策方法的研究所具备的现实意义也显得尤为突出。由于空中作战态势复杂多变,如何快速感知战场环境并生成一种有利且准确有效的空战策略成为了空战博弈的重要研究方向。在空战决策方法的研究进程中,有诸如专家系统、影响图、矩阵博弈和微分对策等方法的研究进展,但此类传统方法存在适应性较差、计算复杂、难以满足实时性等问题。随着近年来深度强化学习技术的兴起与发展,其在
近年来,恶意代码分析一直都是中国网络安全领域研究的重要课题之一。其中高级可持续威胁攻击(Advanced Persistent Threat,APT)是一种特定的恶意代码入侵方式,它通过扫描探测系统漏洞,对靶机投放恶意漏洞利用脚本,再植入二进制恶意程序,达到感染主机的目的。研究恶意代码功能分类模型能进一步分析出恶意代码的功能行为信息,从而有效地提升APT防御技术,保护网络安全。但近年来分类恶意代码
随着美国成功勘探及开发出页岩气,世界各国都兴起了一股研究页岩气的热潮。我国地质资源丰富,但地形条件复杂,不同地域的构造演化、沉积环境以及热演化过程都不相同,使得页岩气的形成过程和富集程度存在较大差异,所以勘探技术仍是页岩气开发过程中的关键因素。通过使用图像分割技术对深层页岩SEM图像进行分割处理,进而为勘探人员提供辅佐信息,有助于提高勘探效率。为了提升分割精度,本文对深层页岩SEM图像分割进行了深
近年来,随着计算机性能的提升和深度学习的迅速发展,计算机视觉领域迎来了蓬勃发展。头部姿态估计作为基于生物特征的计算机视觉领域的一个分支,是众多学者的一个研究方向。头部姿态估计是指从二维人像图中推断出人在三维空间中的头部朝向的过程。这个课题在很多领域都具有广泛的应用场景,例如驾驶员监测系统、虚拟现实、安防监控系统、学生课堂注意力估计等等。目前,头部姿态估计仍然面临着诸多挑战,例如精度较低、模型泛化能
白内障是致使视力受到损害的主要原因,也是导致失明的严重眼科疾病之一,且白内障疾病发病率较高。但在偏远地区,基层医疗机构的专业眼科人才极度缺乏,无法诊断各类眼科疾病。运用人工智能的方式辅助医生检测白内障,搭建远程白内障超声影像诊断系统,能够有效缓解因诊断不及时,就医困难等原因引发的严重后果。近年来,基于深度学习(Deep Learning,DL)方法的自动化系统显著提高了白内障的检测。然而,白内障自