原子干涉仪中引力相关效应的分析

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:fashenqq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自然界中存在四种基本相互作用力,即引力、电磁相互作用力、强相互作用力、弱相互作用力。其中,引力由广义相对论描述,其它三种力由粒子物理标准模型描述。将引力与其它三种相互作用力采用一个统一的理论来描述一直是物理学家们追求的梦想。因此,开展对引力效应的检验研究无论对于理解引力的本质,还是对于探究大统一理论都具有重要的科学意义。等效原理和引力波分别是广义相对论的基本假设和重要预言。弱等效原理,作为等效原理的重要组成部分,对其的检验是对广义相对论基础的直接检验。引力波,作为时空的涟漪,对其的探测不仅能验证广义相对论的正确性,而且在获取宇宙演化信息方面具有极大潜力。随着原子干涉技术的快速发展,原子干涉仪广泛应用于各种精密测量实验,并逐渐应用于检验各种引力相关效应。其检验精度不仅取决于目前的实验技术水平,而且依赖于原子干涉仪测量各种引力相关效应的理论模型精度。然而,目前原子干涉仪在检验弱等效原理方面,实验精度相对较低且测量中存在一些大的系统误差;在引力波探测方面,目前的理论模型不够完善,存在一定的研究局限性。因此,为原子干涉仪建立完备的理论模型并探究相应的噪声压制方案具有重要的科学意义,将为更高精度的引力相关效应的检验实验奠定一定的理论基础。本论文主要对原子干涉仪检验弱等效原理和探测引力波两个方面展开研究。研究内容包括:(1)针对于原子干涉仪检验弱等效原理,基于等效惯性参考系,建立了完备的理论模型,并提出了主要噪声压制方案。基于爱因斯坦等效原理,我们首先采用空间坐标变换构造一个自由下落坐标系使原子感受到的均匀引力场消失,并进一步利用与引力梯度相关的空间坐标拉伸使原子感受到的引力场不均匀部分消失,从而构造了一个等效惯性参考系。这种方法将原子的引力效应转换到激光光场中,从而简化了计算过程,为原子干涉仪检验弱等效原理建立了普适的理论模型。基于所建模型,我们提出了优化的频移重力梯度补偿技术,消除了拉曼脉冲宽度、引力梯度、与原子团的初始位置和速度的耦合效应,讨论了利用微观粒子在10-14水平上检验弱等效原理的可行性。(2)针对于原子干涉仪探测引力波,建立了普适的理论模型,并分析了不同原子干涉探测器的探测能力。结合广义相对论中的Eikonal方程和原子干涉仪的工作原理,计算了引力波对激光的扰动相位,采用传统的Bord(?)ABCD矩阵法计算了引力波对原子的扰动相位,从而给出原子干涉仪探测引力波扰动的一般矢量表达式。基于此,得到原子干涉型探测器对引力波加极化和叉极化的响应函数,并讨论了其对方位角的依赖关系,为未来引力波探测器确定最佳的探测位置提供了必要依据。最后,分析了主要的噪声项,并结合理论模型评估了探测器的探测能力。
其他文献
自旋电子学是研究电子自旋属性的学科,在磁光存储器、自旋阀、磁隧道结等器件中有很大的应用前景,引导着后摩尔时代信息产业的发展。近年来,二维本征磁性材料的出现为二维自旋电子学的研究提供了更好的平台。磁光克尔技术凭借其独特的优势成为探测二维磁性材料磁光特性的有力手段。然而,实际工业应用对二维铁磁材料的磁学和光学性能提出了挑战。单独的二维磁性材料由于性能单一,限制了其在器件上的应用。合理地构建二维磁性材料
随着全球经济和社会的迅速发展,人们的生活节奏与压力不断增长,脑器质性/功能性疾病的发病率显著上升,所带来的社会问题日趋严重。经颅磁刺激(transcranial magnetic stimulation,TMS)作为一项非侵入性的神经调节技术,其产生的交变感应电磁场能够直接对受试者颅内刺激靶区的电特性进行干预,从而激活或抑制脑组织,在治疗各类因颅内病变导致的精神类、神经类疾病方面具有广泛应用。近年
真核生物的m RNA在翻译之前需要在细胞核中经过剪接加工过程,即前体m RNA在剪接小体的作用下,通过精确的移除内含子并拼接外显子而得到成熟的m RNA。这一过程作为重要的转录后调控机制,对于基因的差异表达、组织器官的发育调控以及正常生理功能的维持具有重要的生物学意义。因此,剪接功能的异常通常会引起严重的发育缺陷以及多种人类疾病的发生(如:颌面骨发育不良、小颅畸形、RP、再生障碍性贫血、多种肌营养
自第一台激光器问世之后,研究激光与物质相互作用的非线性光学开始迅速发展。凭借着超高的响应速度以及独特的能量转换、转移特性,“以光控光”的非线性光学已成长为了一门成熟的、应用广泛的学科,在通信、传感、计算和成像等领域中扮演着不可或缺的角色。近年来,为了响应大数据时代“更快、更小、更智能、更环保”的发展趋势,光子集成技术迅猛发展并逐渐成熟,传统的基于体材料和光纤的非线性研究正逐步拓展至片上。集成器件能
微波介质陶瓷在无源电子元器件中起着至关重要的作用,随着无线通讯频段向高频拓展,低介电常数微波介质陶瓷及LTCC逐渐成为学术界和工业界关注的焦点。本文研究工作紧紧围绕硅酸铜钡基低介微波介质陶瓷展开,系统地研究了硅酸铜钡基陶瓷的物相组成、晶体结构演变和微波介电性能,构建了晶体结构与微波介电性能的关联性。进一步采用三元氟化物作为烧结助剂,制备了系列硅酸铜钡基低介LTCC材料,研究了LTCC基体与银电极的
地源热泵空调系统有良好能效及较低运行成本,但较高初投资和复杂的系统形式也一定程度上限制了其进一步推广应用。现有地源热泵系统参数设计及优化方法较少考虑多变量间的交互影响,传统空调控制方法及运行策略往往忽视系统时滞性及负荷动态变化对能效的影响。本文对夏热冬冷地区地源热泵空调系统参数设计优化和控制运行优化问题进行了研究。在地源热泵空调系统参数设计优化方面,通过实验分析了地源热泵系统在冬、夏季部分负荷工况
肿瘤免疫治疗通过调动机体自身的抗肿瘤免疫应答来控制与消除肿瘤细胞,在临床上具有显著优势。然而,单一免疫治疗药物对实体瘤的客观应答率偏低,导致多数患者不能从治疗中获益。肠道共生菌通过调控宿主免疫应答显著影响免疫治疗的疗效和不良反应。目前关于肠道菌群与肿瘤免疫治疗的研究大多仅聚焦于二者之间的相关性,而特定共生菌是如何介导宿主抗肿瘤应答来辅助增敏免疫治疗药物的作用机制仍不明确。本文旨在研究肠道特定共生菌
在数据爆发式增长的“大数据”时代,基于冯·诺依曼架构的传统数字计算机已经难以满足日益增长的数据处理需求,亟待开发新的高功效比的计算架构。人脑是一种高效、智能的信息处理系统,可以快速并行地处理大量信息,实现信息处理和存储的融合。因此,构建类脑神经形态计算系统是实现高功效比的新型计算架构的可行路径之一。忆阻器具有与生物突触和神经元类似的电学行为,可用于构建大规模低功耗神经形态计算系统。然而,目前研究的
氮氧化物(NOx)的排放会对生态环境和人体健康造成极大的伤害。柴油车NOx排放量高,成为移动源污染防治的重要对象。NH3选择性催化还原NOx技术(NH3-SCR)已成为最有效的脱硝技术之一,该技术的核心取决于催化剂的开发。柴油车国六排放标准不仅加严了车辆在不同工况下的NOx排放限值,还提高了SCR催化剂耐久性要求。氧化锰催化剂在低温下脱硝(de NOx)效率高,因而可用作低温SCR催化剂来解决柴油
临床治疗心肌炎以控制全身急性炎症反应为主,寻找既能降低心肌炎性损伤,又能减缓心肌重塑的治疗方法依然是目前面临的难点和重点。巴多昔芬(Bazedoxifene,BAZ)是第三代雌激素受体调节剂,经FDA批准上市用于临床预防和治疗绝经期女性骨质疏松症,长期使用安全性和耐受性良好。本研究旨在观察巴多昔芬对自身免疫性心肌炎的治疗效果,探讨巴多昔芬影响Th17细胞免疫应答的作用机制。本研究包括以下三个部分: