【摘 要】
:
本论文主要研究了影响铁电场效应晶体管与负电容场效应晶体管电学性能的因素,以及ε-Ga2O3对铁电场效应晶体管与负电容场效应晶体管电学特性的优化作用。研究了基于铁电极化诱导增强二维电子气(2DEG)实现器件沟道导通的高电子迁移率晶体管(HEMT),取得的研究成果如下:本论文研究铁电/半导体(FE/SC)电容结构模型,通过改变铁电极化模型参数、半导体掺杂浓度与材料厚度,研究了半导体表面电势的变化情况。
论文部分内容阅读
本论文主要研究了影响铁电场效应晶体管与负电容场效应晶体管电学性能的因素,以及ε-Ga2O3对铁电场效应晶体管与负电容场效应晶体管电学特性的优化作用。研究了基于铁电极化诱导增强二维电子气(2DEG)实现器件沟道导通的高电子迁移率晶体管(HEMT),取得的研究成果如下:本论文研究铁电/半导体(FE/SC)电容结构模型,通过改变铁电极化模型参数、半导体掺杂浓度与材料厚度,研究了半导体表面电势的变化情况。研究结果表明FE/SC电容的半导体表面电势会随着铁电剩余极化强度(Pr)、铁电矫顽电场强度(Ec)、半导体掺杂浓度以及其厚度的增大而减小,且会随着铁电厚度的增大而增大。本论文还研究了铁电场效应晶体管器件模型结构,并仿真得到其铁电电滞回线与转移特性。研究结果表明铁电剩余极化强度与铁电矫顽电场强度越大,铁电场效应晶体管的存储窗口宽度越宽。铁电相对介电常数越小,铁电场效应晶体管的存储窗口宽度越宽。FE/ε-Ga2O3基铁电场效应晶体管比FE/Si基表现出更优秀的电学特性。本论文研究了FE/Ga N基HEMT与FE/ε-Ga2O3基HEMT,通过改变铁电饱和极化强度(Ps)与铁电剩余极化强度,本论文研究了转移特性、输出特性、界面载流子浓度与势阱深度相关特性。研究结果表明铁电饱和极化强度与铁电剩余极化强度的增大可以增大2DEG的载流子浓度。FE/Ga N基HEMT在栅极电压过大时会影响2DEG的性能。相比较于FE/Ga N基,FE/ε-Ga2O3基HEMT的2DEG性能更稳定。
其他文献
微电网中,储能装置与光伏系统相互配合给负荷供电,可以对光伏多余的发电量进行存储,还能有效降低电网峰值负荷,缓解用电高峰期间供电压力。随着电动汽车的推广应用,微网中的电动汽车既可以作为负荷,也可以作为储能设备,大量电动汽车接入电网时,可使其在电网负荷低谷时,作为用电负荷充电,在电网负荷高峰时,作为分布式电源向电网运输电能,起到对电网负荷“削峰填谷”的作用。本文主要研究电动汽车有序充放电模式下的光伏储
临床输血是重要的辅助治疗方法,在患者临床救治中发挥着重要作用,及时安全输血对保证患者身体健康极为重要。临床输血检验常规方法有聚凝胺法、酶法和盐水介质法,这些方法操作复杂,检验时间较长,无法迅速对患者进行输血,容易使患者错过最佳治疗时间。此外,由于抗人球蛋白配血需要对不完全抗体进行检验,容易导致假阴性现象发生,而卡式微柱凝胶试验是在抗人球蛋白基础上发展的一种新型临床输血检验方法,可以较好地完成
随着有机材料应用日益广泛,在高温、高压和高辐射等极端环境下的应用需求越来越多。常规的实验室研究方法,不能很好地应用于极端环境下的材料研究,且开发周期长、成本高,不能适用于当下的研究现状,材料计算模拟弥补了上述的不足。基于理论模型以及计算预测,材料计算模拟可以对材料的结构等进行综合性的分析。在理论模型的基础上,传统的材料研究深度得到了拓展,实现了定性分析和定量分析的结合;而计算预测,使得材料的研究有
目前,随着储能技术和电动汽车的不断发展,电池管理系统(BMS)的开发与优化变得非常关键。锂电池的SOC估计作为电池管理系统的核心算法,在储能技术和电动汽车的使用领域中占有重要的地位。近年来,国内外已有大量的学者对锂电池SOC估计问题展开了研究。由于单一卡尔曼滤波算法和H∞滤波算法估计结果不够理想,许多学者在卡尔曼滤波算法与H∞滤波算法的基础上做了进一步的改造,因此得到了扩展卡尔曼滤波算法、无迹卡尔
突发公共卫生事件因其紧迫性和不确定性,是全球金融经济发展的重大威胁之一。2019年12月中国发现不明原因肺炎病例并向WHO报告,2021年1月30日WHO发出公告称将“新冠肺炎”(即中国发现的不明原因肺炎)疫情列为引起国际关注的重大突发公共卫生事件。新冠肺炎疫情(以下简称COVID-19)的爆发和蔓延严重威胁到人类的生命健康,也严重影响到经济社会的发展,很多行业在本次疫情中受到严重的冲击。中药行业
铁磁绝缘体因其能利用磁子传递自旋信息从而降低器件功耗的特性而成为自旋器件传递信息的主要载体,其中较为理想制作自旋器件的铁磁绝缘体材料是无掺杂的钙钛矿材料。双钙钛矿材料因具有高居里温度、半金属性以及金属-绝缘体转变等特殊性质成为铁磁绝缘体理想的候选材料之一。然而目前对双钙钛矿材料的物性调控主要集中在B位进行元素替换,在A位上通过元素替换的物性调控研究很少报道。因此本文通过在A位上用离子半径较小的镧系
双钙钛矿材料以其优良的超导性质、铁电性质、磁性、介电性质、巨磁阻效应而被广泛的应用在了电学通讯等领域之中,例如电子器件、磁记忆元件以及太阳能电池的元件等。在过去的几十年里,通式为A2BB’O6的双钙钛矿氧化物在凝聚态物理领域引起了研究者们的极大关注。对于这一四元化合物体系,A位(稀土或碱土元素)和B/B’位(3d,4d或5d过渡金属)阳离子的各种组合,使得它们的电学和磁学特性复杂多样。B/B’位的
创新是人类才能的体现,国家和社会发展的源泉,世界进步的动力。创新这个名词在今天非常流行,几乎每个组织都在谈论创新,人人都知道创新的重要性,激烈的竞争、瞬息万变的市场和技术已经让人们对此深信不疑。事实的确如此,许多企业通过创新,保持和获取了竞争优势。但是,一个企业想要提高其创新能力,持续性的发生创新行为,首先需要了解影响企业创新能力的因素有哪些,这些因素之间是否存在相互作用的关系,因为只有这样才能有
高温超导材料一直是凝聚态物理学的重点研究对象。科学家们一直在探索高温超导材料,希望在实际生产中实现超导材料的更多的应用。但到目前为止,研究发现的大部分超导体的临界转变温度都比较低,而一些预测的氢化物高温超导体达到临界转变温度所需的压强太高,这使超导体的应用受到极大的限制。另一方面,自从拓扑绝缘体的发现以来,寻找新的拓扑状态已经成为凝聚态物理的核心。随着狄拉克半金属和外尔半金属的出现,对拓扑现象的研
MicroRNA是调控基因表达的重要功能片段,它们在动植物的生长发育、疾病发生过程中发挥着重要的作用。基于mi Records和miRNAmap数据库,我们收集了高等动物人类、小鼠和大鼠和低等动物线虫的miRNA和它们的靶mRNA 3′UTR匹配片段,研究和比较了高等动物和低等动物miRNA片段和对应的匹配片段在mRNA 3′UTR序列上的相互作用的位置偏好性,探讨了两类片段的G+C含量、配对率对