金属氨基化合物在储氢及离子导体中的应用

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:wjw909
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
可持续发展一直是人类关注的重点问题,氢能以及太阳能、风能等二次能源的发展及应用受到人们的广泛关注。但这些能源的储存与运输一直限制其发展应用。金属氨基化合物-金属氢化物储氢体系是目前应用潜力最高的固体储氢材料之一,但其较差的动力学性能阻碍其实际应用。此外,金属氨基化合物还可作为固体电解质应用在目前安全系数更高的全固态电池中,解决二次能源的储存运输等问题。针对上述问题及应用前景,本文首先对金属氨基化合物K2Mn(NH2)4-8Li H的储氢性能及动力学性能进行了研究,其次对该材料中存在的新型钾离子固体离子导体材料KNH2进行了研究,主要内容如下:通过金属K、Mn与氨气球磨合成K2Mn(NH2)4,测量K2Mn(NH2)4-8Li H的储氢性能,该体系在开放系统中可释放超过6.0 wt%H2和NH3;在封闭系统中可逆储氢量高于3.0 wt%(吸脱氢温度分别为300℃、375℃)。脱氢后的K2Mn(NH2)4-8Li H样品具有目前已发现的氨基化合物-氢化物储氢体系中最快的吸氢速率:约1 wt%/min(230℃,50 bar氢压)。使用原位SR-PXD技术探究了K2Mn(NH2)4-8Li H在吸脱氢过程中的具体变化过程,在吸脱氢循环过程中“unknown”的转变可能是快速吸氢的原因。在复合氢化物储氢体系中吸脱氢的动力学增强可能是由于界面接触或传质的改善,研究发现在K2Mn(NH2)4-8Li H中,K-N-H材料参与了“unknown”的转变,推测K-N-H材料具有高的离子电导率。该类材料的离子导电性能的研究目前未见报道,通过测量K-N-H材料的离子传导率,发现了一种新型钾离子固体离子导体材料KNH2。金属K与氨气直接合成的KNH2升温至40℃展示出离子传导的性能,电导率为9.84×10-7 S cm-1,并在150℃时升为4.84×10-5 S cm-1。KNH2的离子传导率及传导能力可通过机械球磨提高,最佳球磨条件(150转/分钟球磨10小时)处理后的KNH2(V150T10)室温下具有4.39×10-7 S cm-1的离子电导率,在40℃及150℃下离子电导率分别为1.39×10-6 S cm-1(提升140倍),3.56×10-4S cm-1(提升7倍)。研究KNH2中离子传导的机理,发现球磨主要通过影响KNH2晶格中缺陷数目及比例来提高离子传导率及离子传导能力。并使用Cst C、Cst V等技术证明KNH2中主要传导的离子为K+。在此基础上,尝试球磨法将KNH2与其它阴离子材料复合,以提高其离子电导率。结果表明,复合KNH2材料的离子电导率均不如纯KNH2,推测原因为K+的传导路径被过多的阴离子阻塞。此外,也研究了多阳离子(碱金属离子)氨基化合物的离子电导率,碱金属氨基化合物(Li NH2,Na NH2,KNH2)的离子电导率均通过球磨有一定的提升,Na NH2-KNH2可在110℃具有3.67×10-2 S cm-1高离子电导率(可能已熔化)。
其他文献
自氧化铪(HfO2)基铁电材料问世以来,其优异的铁电性能被人们所熟知,逐渐被广泛应用到电子元器件中。相比于传统钙钛矿结构铁电薄膜,HfO2基铁电薄膜CMOS工艺兼容度高、可微缩性好、操作电压低、极化强度适中,而且还具备极高的抗辐照能力,是一种极为理想的新型铁电薄膜材料。本文利用溶胶-凝胶法以及原子层沉积法成功制备La、Y、Sr、Zr等四种掺杂的氧化铪薄膜,并对其进行了性能优化以及辐照实验研究。具体
多效蒸发(Multiple Effect Evaporation,MEE)的原理是在系统中设置多个蒸发器,通过重复利用蒸发过程产生的二次蒸汽作为下一级蒸发器的热源,以达到节能优化目的的一种蒸发方式。多效蒸发系统在制备医药注射用水、造纸黑夜浓缩以及海水淡化等领域有着广泛的应用。分析多效蒸发的热力过程可以达到优化系统结构、降低能耗的目的。目前,制备注射用水多效蒸发系统的研究模型属于比较简单的通用模型,
磁力联轴器通过磁场的相互作用来传递转矩,具有无泄漏、避免振动传递等特征,在石油、化工、制药等对密封要求严格的场合被广泛应用。由于电磁、温升、机械等因素对磁力联轴器性能的影响较为显著,其运行过程中的涡流损耗所引起的温升不仅会引起永磁体退磁,同时温升的变化也会引起大的热应力。为研究磁力联轴器调速性能及磁热固耦合特性,本文基于磁热固多场耦合的方法,对磁力联轴器的调速特性、温升特性及热应力进行了仿真研究。
正交各向异性结构因其优良的力学和传热性能,已广泛应用于机械和动力工程等领域,且其工作环境大都涉及多物理场,因此采用拓扑优化方法对正交各向异性结构进行多目标拓扑优化设计,能根据不同设计需求得到综合性能最优的拓扑结构,对工程结构的实际应用具有重要意义。然而,基于材料分布模型的拓扑优化方法获得的拓扑结构易出现锯齿、棋盘格和中间密度等问题,最优拓扑结构不易加工制造。参数化水平集法(Parameterize
六角螺柱作为一种重要的机械紧固连接零件,广泛应用于汽车、航空航天等零部件装配生产领域。传统的六角螺柱加工方法主要采用切削加工,该方法不仅切断了金属的纤维流线,而且对后续的连接质量产生一定的影响。冷挤压成形是一种少无切削的近净成形制造方法,该方法材料利用率高且适合大批量生产,是六角螺柱的有效成形制造方法之一。然而,六角螺柱连续式冷挤压变形过程复杂,界面接触压力变化大,零件表面的磷化皂化膜在冷挤压变形
倒向问题作为反问题的一种类型,已经应用到生物医学、物理学以及信息工程等诸多领域之中.很多实际问题需要根据已知的数据信息去还原最初的状态,倒向问题的研究在其中起着至关重要的作用,关于倒向问题的研究也成为了热门课题.本文主要研究了两类分数阶扩散方程倒向问题适度解的存在性.第一章介绍了分数阶扩散方程倒向问题的研究背景及现状,主要的研究工作以及相关的定义定理.第二章研究了带超贝塞尔算子的分数阶扩散方程倒向
深孔零件已广泛应用于武器装备、轨道交通、工程机械等领域,其孔加工质量对产品综合性能及使用寿命有着直接影响。通常孔加工可采用钻削、镗削、铰削等较简单加工工艺完成,但针对半封闭式弱刚性结构的深孔零件,若仍沿用传统简单制造工艺,加工精度和加工效率将难以兼顾。为此,采用深孔镗削设备,配备专用镗滚刀头对深孔零件进行加工,工件只需一次装夹即可完成粗镗、精镗和滚压多道工序,加工精度和加工效率均能得到有效提升。但
随着电子元器件小型化微型化的要求以及环境友好的需求,传统的制冷设备已经无法满足当代社会的需求,全新的固态制冷技术正在蓬勃发展,其中电卡制冷由于其能耗低无噪音无污染引起了人们的广泛关注,电卡效应主要利用的是极性材料内部的等温熵变进行制冷,而铁电材料由于其极化翻转特性成为电卡制冷的首选材料。当绝热温度变化((35)T)大于3 K时,便可满足固态制冷实际应用的要求,且绝热温度变化越大其成本及能耗将越低。
隧道磁电阻(Tunnel Magneto-Resistance,TMR)传感器具有灵敏度高、功耗低、线性范围宽等优点,被广泛应用于航空航天、汽车电子、无损检测和生物医疗等领域。但是,TMR传感器特性的测试水平落后于生产实践需求,在一定程度上制约了TMR传感器的应用。在TMR传感器的研究与应用中,有必要针对具体的应用需求对传感器的性能进行测试与分析,确保传感器性能得到充分利用。TMR传感器的测试需要
当今时代,能源问题日益凸显,全球变暖的趋势也一直未消退,迫切需要高效的高容量的绿色能量存储和转换装置。在此前提下,由于高比容量、高能量密度、活性物质来源丰富、绿色无毒等出众特点,锂硫电池被科研人员广泛研究。然而,活性物质硫及其放电产物电子导电性很低、中间产物易溶于有机电解液、充放电过程中体积应变大等关键弊端使得锂硫电池始终未能迈入商业化的阶段。针对这些问题,本论文中,以锂硫电池中间层材料为研究对象