【摘 要】
:
自上世纪八十年代以来,人工神经网络迅猛发展。现在,它已经被广泛应用于诸多领域解决实际问题。但是,就目前情况而言,我们所应用的人工神经网络属于第二代神经网络。尽管第二代神经网络帮助我们在很多领域取得了突破性的进展,但它并没有实现真正的仿生,不能够模仿真实大脑皮层神经元网络的工作机制。而构建与人类大脑神经元网络相类似的智能网络作为当下的研究热点,由于大脑结构和功能之谜尚未真正解开,变得极具挑战。本文从
论文部分内容阅读
自上世纪八十年代以来,人工神经网络迅猛发展。现在,它已经被广泛应用于诸多领域解决实际问题。但是,就目前情况而言,我们所应用的人工神经网络属于第二代神经网络。尽管第二代神经网络帮助我们在很多领域取得了突破性的进展,但它并没有实现真正的仿生,不能够模仿真实大脑皮层神经元网络的工作机制。而构建与人类大脑神经元网络相类似的智能网络作为当下的研究热点,由于大脑结构和功能之谜尚未真正解开,变得极具挑战。本文从生物学的角度出发,对人工神经网络模型进行改进,构建更符合真实大脑皮层神经元网络的脉冲神经网络模型,从信息传输与处理的角度理解人类大脑智能。首先,根据生物学知识,本文提出了不确定神经元的概念,并将不确定神经元作为构建神经网络的节点,对研究大脑皮层不同脑区神经信息传输的前馈神经网络模型进行改进,提出了一种新的基于不确定神经元的前馈神经网络模型。在此基础上,通过软件仿真的方法,本文模拟了神经信息在不同脑区之间的放电率传输,并分析了一些重要参数对前馈神经网络传输性能的影响。然后,针对目前初级视觉皮层神经元网络研究的缺陷,从生物学角度出发,本文构建了一种更符合真实大脑初级视觉皮层刚出生时的状态的随机循环网络。并在此基础上,本文对神经元网络在接收刺激之前、接收刺激的过程中以及接收刺激之后三个过程进行仿真,以此来模拟初级视觉皮层在刚睁眼时、视觉经验的积累过程中以及完成视觉经验的积累三个阶段网络的变化。本文实现了对大脑皮层多个功能区以及针对某一特定功能区建模的仿真。仿真结果表明,在基于不确定神经元的前馈神经网络模型中,外界噪声强度、突触的传输成功概率以及神经元的不确定性概率等因素都会影响前馈神经网络中的放电率传输,对这些参数进行适当的调整能够使网络具备最佳的信号编码以及信息传输的能力,即最大交叉相关系数Q10的值最大。除此之外,本文还与只有兴奋性神经元构成的前馈神经网络进行比较,仿真结果表明由不确定神经元构成的前馈神经网络的放电率传输的性能更佳。在针对初级视觉皮层构建的随机循环网络的仿真中,仿真结果表明:随着视觉经验的积累,具备方位选择性的单个神经元的方位选择性变得更强,且在突触可塑性的诱导下,随机循环网络会随着视觉经验的积累出现特异性功能的视觉环路。这些结论表明我们模型中的学习过程与真实大脑初级视觉皮层生长发育过程中的学习机制相吻合,对于未来构建具有学习和记忆功能的智能网络具有重要意义。
其他文献
随着遥感卫星分辨率的提高,遥感技术在国土资源利用、城市环境监测和自然灾害预报等领域得到了广泛应用。分割是遥感图像应用的一个重要方面,同时也是遥感图像研究的重点和热点之一。一般来说,遥感图像含有大量特征,包括光谱特征、形状特征和纹理特征等,若只用其中一种特征,通常很难获得高精度的分割结果,因此如何合理地利用多种特征来进行遥感图像的分割以获得更好的分割效果是一个值得研究的问题。本文从特征提取、特征选择
高光谱图像具有丰富的光谱信息和空间信息,广泛应用于军事、农业、地质勘测等领域。虽然高光谱图像含有丰富的可用于分类的信息,但也存在信息冗余以及“同物异谱”现象,在标注样本有限的情况下,分类模型很难获得一个较好的分类结果。随着遥感技术飞速发展,可以很轻易获得高光谱图像,但精确的地物标注需要大量的人工,如何充分利用高光谱图像的空谱信息,在标注样本有限的情况下,提高模型特征表征能力和泛化能力,实现高光谱图
推荐系统是工业界和学术界处理信息过载的主要手段,其通过分析用户和所推荐项目间的关系,或利用已有用户历史行为记录,帮助用户从海量数据中寻找可能感兴趣的信息。近几十年,推荐系统技术得到了长足发展,基于协同过滤、机器学习、深度学习的模型均已在现实生活中得到了广泛应用,但这些模型表达能力有限,且每次推荐都是按照固定策略,无法适应时刻变化动态的用户兴趣。其次,这些静态模型将每次推荐视为独立过程,没有考虑用户
传统机载预警雷达的主要功能是目标检测和参数估计,采用较窄的带宽就能完成任务。但在未来的应用中,在检测目标后,机载雷达需要获得高分辨率的目标距离像或ISAR图像,以便实现目标分类和识别,因此需要采用更大的带宽。但是带宽的增加意味着系统的时间/距离分辨能力提高,也会给信号处理带来问题:在空域,信号的孔径渡越时间不再远小于信号的时间分辨率,目标信号和杂波信号在阵元间的距离走动不能忽略;在时域,高速目标信
随着信息技术的不断发展,传统有源雷达面临着低空突防、电磁干扰、隐身飞机和高速反辐射导弹等各方面的挑战。为应对这些威胁,各国研究人员不断探索新体制雷达技术,外辐射源雷达便是其中一种。外辐射源雷达是一种无源雷达,本身不具备信号发射装置,依靠非合作辐射源进行被动探测,其系统较隐蔽,不易被敌方摧毁。早期的外辐射源雷达通过FPGA和DSP芯片来搭建信号处理系统,但该方法采用的DSP开发板较多,因此硬件平台较
主瓣干扰给雷达探测带来了严峻的挑战,有效抗主瓣干扰是目前亟需解决的问题。基于数字射频存储器(DRFM)技术的间歇采样转发干扰是一种常见的主瓣欺骗干扰样式,其通过对雷达信号进行低速率的间歇采样转发,使得干扰信号在时域、频域和空域特征上与真实目标回波信号高度相似。传统雷达难以在保留目标信号的同时鉴别和抑制干扰,从而对雷达的目标探测和跟踪构成了严重的威胁。基于上述背景,本文从抗主瓣干扰的角度出发,重点研
点集配准是图像处理和计算机视觉领域中的一个热点和重点方向,在医学图像分析、目标识别与跟踪等方面都有重要的应用价值。点集配准的目标是恢复从模板点集到目标点集的空间变换,使两点集对齐。过程主要分为两步,即确定对应关系和求解空间变换。二者互为前提,交替迭代,直至完成配准任务。由于点集中非刚性形变、噪声、离群点、旋转等干扰因素的存在,导致点集配准算法的精度和效率均受到一定制约。本文以概率模型匹配方法作为基
由海表面的后向散射作用形成的海杂波严重干扰雷达对目标的检测,海面弱目标常常被海杂波所淹没。为了提升雷达对于海面弱目标检测的能力,本文基于某岸基雷达的X波段实测海杂波数据,分析了海杂波的特性,并对海面弱目标检测算法进行了研究。本文主要研究工作为:1、利用实测海杂波数据对海杂波物理散射特性、统计特性、时频特性以及时空相关性进行分析。首先通过分析海杂波的成因,得出海杂波的物理散射模型由布拉格散射、突发散
图像实例分割完成的是像素级的实例目标分割任务,是人工智能与计算机视觉领域的重要发展方向,其被广泛应用到各个领域,如工业生产、监控安防和医疗卫生等。目前的图像实例分割模型主要存在两个问题,第一,传统的图像实例分割模型由于图像中实例对象尺寸差异跨度较大,导致目标检测阶段出现误检、漏检等问题,从而使生成的掩码精度较低。第二,传统的实例分割模型在掩码生成阶段,主要是通过汇聚到全连接层的特征信息对像素点进行
随着计算机技术和互联网技术的发展,各行各业纷纷向“互联网+”和数字化转型,数字信息化服务的用户量剧增,导致了各个领域的数据量呈指数式暴涨,数据计算面临着新的需求和挑战。以单一类型计算资源为主的传统计算系统平台力不胜任,无法满足日趋复杂且多变的应用需求。在此背景下,通用异构计算平台应运而生,被广泛应用于科学计算、深度学习、信号处理和云计算等领域,并取得了显著的成效。它的大规模计算资源为处理海量数据提