论文部分内容阅读
互联网和多媒体技术的迅猛发展为音频媒体的使用和传播提供了极大便利,但伴随而来的信息安全问题也成为亟待解决的全球难题。音频数字水印技术是当前实现音频媒体的版权保护、提供重要信息的隐蔽传播、隐秘标注音频内容、检测音频内容完整性等目的的重要手段,在版权保护、隐秘通信、内容标注、身份认证、军事情报等领域获得广泛应用,成为近年来通信和信息安全领域的研究热点。音频鲁棒水印技术的研究主要集中于在不影响音频载体使用价值的前提下提升其隐藏容量和抵御外部攻击的鲁棒性,以实现借助音频媒体隐秘传输机密信息和保护音频媒体自身权属等目的。以隐秘存储和传播机密信息为目的的应用注重算法的隐藏容量、对抗信号处理攻击的能力、安全性以及对所提取机密信息的恢复处理等特性的研究。以权属保护为目的的应用则注重算法对抗多种恶意攻击的鲁棒性。目前大多数音频鲁棒水印算法尚存在无法抵御恶意攻击、隐藏容量低、透明性差、缺乏有效的同步机制、对所提取的信息质量没有有效的增强处理措施等不足,且仅应用于隐藏图片或序列水印,而不适合用于隐藏数据量大且对误码率极其敏感的音频水印。本文立足于借助音频媒体实现隐秘通信和音频媒体的权属保护等应用为目的的音频鲁棒水印算法的研究,包括提升算法的隐藏容量、鲁棒性、安全性以及音频水印的消噪处理等多个方面,主要研究成果有:(1)针对用于隐秘通信的音频水印算法在隐藏信息时还存在隐藏容量小、鲁棒性差以及对所提取的音频信号缺乏有效的质量增强处理等方面的不足,提出一种基于离散小波变换(Discrete Wavelet Transformation,DWT)的音频水印算法。该算法利用人耳听觉系统对音频信号的部分频率成分发生微小变化不敏感的特性,调节音频片段经小波变换后所得的多级中高频小波系数,进而改变其前后两部分的能量状态来隐藏二进制信息。在提取信息时,无需原始音频载体的参与,仅通过对比小波系数前后两部分的能量相对大小来判断二进制的取值,可实现信息的盲提取。在机密信息被嵌入音频载体前,采用对其预加密的方式提升信息的安全性,以防止信息泄露。嵌入深度、隐藏频段和音频载体的分段长度这3个参数对该算法的隐藏容量、音频载体的听觉质量以及所提取信息的误码率具有重要影响,在实际应用中可根据实际指标要求设置算法所需的最佳参数。实验测试结果表明该算法具有良好的透明性和安全性;较大的隐藏容量,且音频分段长度越短,用于隐藏信息的频段越多,其隐藏容量越大;能够抵御白噪声、低通滤波、MP3压缩、重采样、重量化和回声干扰等多种攻击;可以隐藏任意二进制数据,所提出的消噪方法可有效去除音频水印中的误码噪声,增强其听觉质量。(2)为了进一步提升音频水印算法的隐藏容量和透明性,提出了一种基于DWT和离散余弦变换(Discrete Cosine Transform,DCT)混合变换域的大容量音频数字水印算法。该算法利用DWT的多分辨率特性把音频载体分解为不同频段的小波系数,然后利用DCT的能量集中特性对特定的小波系数进行能量压缩,最后使用两个数值不等的嵌入深度表示二进制水印的两个状态来设计水印嵌入规则。在提取水印时,首先计算每个音频片段中水印的嵌入深度,然后通过对比嵌入深度的大小实现水印信息的盲提取。采用对机密信息进行混沌预加密的方式进一步增强其安全性。实验测试结果表明,该算法在携带机密信息时具有良好的安全性、与上一种算法相比具有更大的隐藏容量和更好的透明性、能够抵御MP3压缩、白噪声、低通滤波、重采样、重量化、幅度放大和回声干扰等多种信号处理攻击、提取的图片水印非常清晰,提取的音频水印经消噪处理后具有良好的听觉质量。(3)为了进一步提升水印算法的透明性和鲁棒性,提出了一种基于DWT和DCT的自适应强鲁棒的音频数字水印算法。该算法通过对比音频片段经过DWT和DCT处理后所得到的两组变换域系数的平均幅度来设计水印嵌入和提取规则,并据此分析信息的嵌入深度与透明性和鲁棒性之间的关系,提出了一种以每个音频片段的平均幅度控制其水印信息嵌入深度的自适应控制策略。为了提高机密信息的安全性,该算法利用混沌序列良好的伪随机特性对水印进行预加密,在不需要原始音频参与的情况下,只有拥有正确密钥的用户才可以盲提取信息。使用音频信号和二值图片作为机密信息分别测试所提算法的各项性能,实验测试结果表明,该算法能够提供172bps的隐藏容量、具有更好的透明性、在抵御MP3压缩、白噪声、低通滤波、重采样、重量化、幅度放大和回声干扰等多种攻击时鲁棒性明显提高,所提取的图片水印和音频水印具有更好的相似度和听觉质量、与其他水印算法相比具有更好的性能。(4)针对用于音频媒体权属保护的水印算法其携密音频在遭受时间缩放、变调、随机剪切和抖动等恶意的同步攻击时,水印难以提取甚至丢失的问题,提出一种基于DCT和奇异值分解(Singular Value Decomposition,SVD)的抗同步攻击的音频水印算法。在分析同步攻击特点的基础上,通过追踪浊音帧的局部最大值来设计同步机制,提出一种基于浊音的局部最大值追踪算法用以搜寻水印的最佳嵌入区域。对嵌入区域内的时域数据执行DCT后,再利用SVD对中频系数进行分块和奇异值分解,最后使用量化的思想设计水印嵌入规则。该算法提取水印时仅通过判断特征值的奇偶性即可获取水印,可实现信息的盲提取。使用混沌序列对水印进行预加密以增强其安全性。该算法利用二次均匀分帧、“局部最大值追踪算法”和三次重复嵌入相同水印等多种措施使其具有很强的鲁棒性。实验结果表明该算法具有良好的透明性和安全性、可提供64kbps的隐藏容量、在多种强度的时间缩放、变调、随机剪切和抖动等恶意攻击下,所提取的图片水印非常清晰,可有效证明其音频载体的权属。