超临界压力CO2冷却换热特性及毛细管换热器研究

来源 :中国科学院大学(中国科学院工程热物理研究所) | 被引量 : 0次 | 上传用户:baozhuangpms
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着能源需求日益增长和环境可持续发展受到越来越多的重视,以二氧化碳为循环工质的超临界二氧化碳布雷顿循环发电和跨临界二氧化碳热泵以清洁高效、节能环保的特点展现出了广阔的应用前景,引起了广泛的关注。高压紧凑式换热器是超临界压力二氧化碳循环系统中的重要部件。一方面,超临界流体在临界点附近的物性剧变特点导致二氧化碳独特的管内流动换热特性,另一方面,非均匀热容、沿程换热及压降的多变特性使换热器的优化方法不同于常规换热器。此外,超临界压力二氧化碳的高压特性对换热器的强度提出了较高要求。毛细管换热器是一种新型高性能紧凑式换热器,在超/跨临界二氧化碳换热方面具有良好的承压能力和性价比。本文以毛细管换热器为主要研究对象,通过数值模拟与实验研究结合的方式,研究了超临界压力二氧化碳在微通道内的冷却换热机理,分析总结了毛细管束壳程流体流动换热规律,对不同二氧化碳换热关联式的工程实际应用的准确性进行了对比,并结合物性剧变的特点,针对换热器的夹点问题和流动传热性能的提升进行了综合优化,可为二氧化碳毛细管换热器的设计和应用提供理论支撑。主要结果如下。(1)采用数值模拟方法开展了超临界压力二氧化碳在恒热流壁面条件和耦合换热壁面条件下的冷却机理研究。沿程温度变化导致的导热、比热等物性剧烈变化引发了拟临界点附近边界层厚度的急剧减薄及底层传热特性的增强;密度变化在浮升力作用下导致二次流动,强化了上半部的换热,弱化了下半部的换热。超临界压力二氧化碳与冷却水在毛细管换热器耦合流动换热时,管外冷却介质的流动方式变化造成不同的内外耦合温度场,进一步对管内超临界压力二氧化碳换热和压降特性产生影响,其中,冷却水向下横掠方式中二氧化碳二次流速度大小比向上横掠高出5%。基于数值模拟结果,对已有的超临界压力二氧化碳冷却换热关联式和压降关联式准确性进行了对比分析,为换热器设计提供理论基础。(2)搭建了超临界压力二氧化碳换热器实验台,开展了超临界压力二氧化碳毛细管换热器的实验研究。结果表明,毛细管束下有折流板的壳程换热系数达到20000~30000 W·m-2·℃-1,相比无折流板提高3~4倍,并且毛细管束壳程换热系数可达到常规壳程换热关联式预测大小的2倍以上,拟合了适用于毛细管束壳程换热的关联式;利用新的壳程换热关联式,对超临界压力二氧化碳与壳程冷却介质的换热进行了分析。结果表明,已有的多个超临界压力二氧化碳关联式同实验结果均存在一定的误差,相比之下,Dang的关联式预测结果同当前毛细管换热器实验结果整体偏差小于10%,表明其应用于二氧化碳换热器实际设计时更为准确。超临界压力二氧化碳在管程进出口流量分配处更容易产生较大的压力损失,而管内的摩擦压降和加速压降相对较小。(3)建立了毛细管换热器整体内外耦合的流动换热模拟计算方法。该方法基于超临界压力二氧化碳的换热关联式和壳程流动的数值模拟计算,能够在保证整体计算准确性的基础上,有效降低计算量,节省计算消耗,适用于毛细管数量较多的换热器计算。模拟结果和本文实验结果对比表明,Dang的关联式相比其他关联式,能够获得更为可靠的毛细管换热器整体耦合换热分析。在有折流板的毛细管换热器中,折流板附近由于壳程流动特征的不同,会出现强化换热区和弱化换热区。在强化换热区中,由于壳程换热较强,导致壁温相对较低,管内二氧化碳更靠近临界点,因此管内换热同步增强,使得传热整体增强;在弱化换热区,由于壳程换热较弱,导致壁温相对较高,管内二氧化碳更远离临界点,因此管内换热同步降低,使得传热整体降低。不同换热区域热流密度相差达到4倍以上。(4)提出了针对剧变物性换热器的优化准则,并对超临界二氧化碳毛细管换热器进行了优化。变物性导致换热器内的温度曲线同常规换热器不同,流量分配不当易导致夹点传热恶化的出现,增加冷热介质流量比和降低冷却介质入口温度能有效避免夹点传热恶化问题。(?)耗散理论和效能研究表明,冷流体中间分流设计能够在避免夹点传热恶化的基础上,进一步降低冷却器的传热不可逆损失,提高冷却器效能。通过局部的内外换热和压降调整,提高各单元压降随换热面积的变化梯度的均匀性,能够有效减小总压降,进而降低泵功消耗。基于优化理论的指导,对超临界二氧化碳毛细管冷却器的折流板间距进行了重新布置,整体模拟结果表明,优化后的毛细管冷却器在传热量和传热面积不变的基础上,使壳程总压降降低了 10%。(5)对超临界压力二氧化碳在螺旋管内的流动换热和不同折流板形式的壳程流动换热进行了数值研究。离心力作用和密度变化导致超临界压力二氧化碳在管内横截面上呈现非均匀分布,造成内侧弱化、外侧强化的局部换热特性。螺旋管内二氧化碳整体换热相比直管提高10%以上;不同折流板形式在不同质量流速下的综合性能表现不同,需根据实际工况进行判断。协同角在一定程度上衡量了不同结构下的换热效果,对强化换热结构设计具有指导作用。本文针对超临界压力二氧化碳毛细管换热器,沿耦合换热单元-换热器整体-优化设计的路线,通过数值模拟和实验方法,系统研究了超临界压力二氧化碳冷却换热机理及毛细管换热器的传热与压降综合性能,对比了不同二氧化碳关联式的准确性,提出了毛细管束壳程换热关联式,开发了可靠高效的毛细管换热器数值模拟方法,阐明了毛细管换热器中超临界压力二氧化碳和冷却水的耦合换热机理,建立了变物性换热器的设计优化准则,为超临界压力二氧化碳毛细管换热器的设计应用提供了研究基础与理论支撑。
其他文献
飞翼无人机采用翼身融合布局,取消了尾翼并将机身设计为一个升力部件,可以降低燃油消耗、提高续航能力、改善气动和隐身性能,是飞行器发展的重要方向之一。然而,飞翼布局的多操纵面构型使得无人机的飞行控制系统变为过驱动系统,从而带来了控制冗余的难题。一种有效的飞行控制系统设计方法是采用“飞行控制律+控制分配律”的级联架构,通过控制分配方法解决操纵面冗余难题。在控制分配律的设计过程中充分考虑分配精度、控制能耗
为了从环境中捕获更多风能,风电机组朝着高塔筒、长叶片、大功率的大型化方向发展,机组结构变的更加复杂;同时为了减轻质量、节约成本以及出于不同的设计需求,叶片往往被设计为柔性且具有弯、扭、掠等复杂外形的细长形式。这些都导致风电机组面临更为严重的几何非线性、气弹、共振、失稳等动力学问题,需要建立更适用大型风电机组的动力学分析工具来进行机组载荷和运行安全性评估。因此,该文建立了适用于现代大型风电叶片和机组
燃烧室作为航空发动机的三大部件之一,被称为发动机的核心,宽稳定工作边界和高燃烧效率是燃烧室设计的主要目标。随着航空事业的发展,航空发动机推重比不断增大,燃烧室油气比、头部进气量相应增大,这使得燃烧室稳定工作边界不足,燃烧室稳定工作边界不足问题制约着我国航空发动机的发展,传统燃烧室头部设计已经不能满足需求,目前主要通过设计新型燃烧室来拓宽稳定工作边界,新型燃烧室多采用燃油分级、燃烧分区的分区分级组合
低阶煤的分质分级和梯级利用是煤炭清洁高效利用的战略发展方向,主要途径是煤气化和煤热解。气化和热解过程产生的残碳和半焦可以作为燃料再次利用,这类燃料挥发分含量低,称之为超低挥发分碳基燃料,普遍存在着火困难、燃烧稳定性差、燃烧效率低和污染物排放高等问题。预热燃烧技术能够实现难燃固体燃料的高效燃烧及低NOx排放,基于该技术,本课题提出一种将分离和返料装置内置在提升管中的内循环预热装置用于燃料的稳定预热,
在能源利用中热传递的控制和管理是一个关键的目标和方向,而固态器件热管理中一个重要的研究内容就是热整流现象。本文的研究内容就是围绕硫化钼薄膜导热性质和热整流效应开展的。首先,为了测量二硫化钼薄膜的导热系数,本文开展了适用低维材料导热系数测量方法研究,搭建了相应实验台,并采用标准的微米铂丝进行了系统校准。结合自主研制的微纳悬空探测器,利用该系统测量了一种单根纳米竹节状聚合物材料,其极低的导热系数表明该
发动机在高空条件下,由于吸雨、吸雹和进气畸变等因素使得进入燃烧室的气流不稳定,容易引发燃烧室熄火现象,高空环境下,空气温度及压力较低,燃油的雾化蒸发效果较差,造成点火较为困难。目前国内外关于燃烧室在高空极端条件下的再点火研究较少,低温低压环境对燃烧室高空再点火的作用机制尚不明确。针对上述问题及研究现状,本文以单头部及五头部线性排列模型燃烧室为研究对象,对低温低压环境中的流场、燃油分布、燃烧室点火及
燃气轮机是重要的能源动力装备,其应用涉及国计民生的各个方面,是我国目前急需突破的被“卡脖子”的技术之一。污染排放问题是制约我国燃气轮机产业发展的重要问题,排放不达标将不能进入商业市场,燃气轮机技术无法在激烈的市场环境中积累运行数据从而实现技术的迭代升级。突破燃气轮机的低污染燃烧技术,将有助于提高我国燃气轮机的竞争力,促进燃气轮机产业良性发展。本文在文献和案例研究的基础上,围绕燃气轮机低污染燃烧室中
碳烟主要由燃料的不完全燃烧产生,碳烟对环境和人体健康的不利影响以及工业对炭黑生产的需求都需要我们对碳烟生成机理和碳烟模型进行研究。碳烟生成是燃烧过程中最复杂的现象之一,涉及燃烧化学、流体力学、质量热输运和颗粒动力学之间的复杂相互作用,尽管经过几十年的研究,有关碳烟生成仍有许多基础性科研问题没有解决。因此,本文采用分子动力学方法对碳氢燃料燃烧过程中的碳烟生成机理和模型进行研究。论文首先阐明了碳烟对环
由于传统化石能源导致的环境污染,以化石能源作为动力来源的动力机械未来的发展更注重于新能源的开发和利用,而太阳能作为取之不尽、用之不竭的新型清洁能源,以太阳能作为动力来源的动力机械将会是未来发展的核心方向之一。高空长航时太阳能无人机是无人机技术与太阳能动力技术结合的产物,采用光伏电池和储能电池作为能源系统,利用太阳能作为其动力来源,通过太阳能的综合利用实现超长航时的飞行,具有跨昼夜甚至跨月持续飞行的
随着铁路技术的飞速发展,列车安全问题也备受瞩目,但是列车故障检测涉及的数据量庞大,处理过程复杂。异构并行系统的强大计算资源与深度学习的发展也为大数据处理带来了新的方向。如何结合大数据异构并行处理与深度学习技术解决列车故障检测问题,并保证其稳定性、可靠性和高效性,面临着巨大的挑战。本文从面向列车故障检测的大数据处理应用着手,从平台体系结构、与深度学习系统的通信技术、编程框架等方面设计并实现面向列车故