【摘 要】
:
如今,雷达已经在侦察、测绘、制导、火控以及防撞、气象等军民领域得到广泛应用。本文针对弹载高度表用射频前端开展研究,主要工作包括:(1)在对比现有弹载高度表技术实现方案基础上,确定了本课题采用K波段弹载线性调频连续波体制,根据实际应用背景和技术要求,完成了射频前端方案选择和关键模块参数指标计算和仿真。(2)一发双收微带阵列天线设计。针对测角需求,结合空间结构要求,采用一发双收微带阵列天线,在对天线阵
论文部分内容阅读
如今,雷达已经在侦察、测绘、制导、火控以及防撞、气象等军民领域得到广泛应用。本文针对弹载高度表用射频前端开展研究,主要工作包括:(1)在对比现有弹载高度表技术实现方案基础上,确定了本课题采用K波段弹载线性调频连续波体制,根据实际应用背景和技术要求,完成了射频前端方案选择和关键模块参数指标计算和仿真。(2)一发双收微带阵列天线设计。针对测角需求,结合空间结构要求,采用一发双收微带阵列天线,在对天线阵元和组阵方式设计和参数优化仿真基础上,针对小尺寸下收发隔离度不高的问题,采用在收发天线中间加载缺陷地结构(DGS)来增加隔离度,有效抑制了收发天线彼此之间的电磁耦合,隔离度提高了将近20d B,同时对天线阵元开V型槽来进一步减单元尺寸,通过整体参数优化,满足技术要求,并完成天线的加工和测试,测试结果与仿真基本吻合。(3)带通滤波器设计。针对射频前端对频率通带选择需求,设计了基片集成波导(SIW)带通滤波器,通过仿真和参数优化,通带为23.95~24.3GHz。完成了基片集成波导(SIW)带通滤波器带的加工和测试,测试结果与仿真吻合,满足使用要求。(4)有源电路设计。采用一发双收线性调频芯片CHC2442-QPG作为核心,完成了功率放大合成电路、低噪声放大电路等收发模块的设计,完成了电路的加工制作,测试结果基本满足设计指标。
其他文献
作为人工智能的一个分支,深度学习凭借强大的数据挖掘及建模能力被广泛用于解决数据驱动等问题。深度学习的成功受益于数据量的高速增长,以及数据的准确性。为训练出高精度模型以提高竞争力,越来越多的企业广泛收集用户数据。然而,这些被收集的数据含有用户的敏感信息,如照片、语音等,用户并不希望敏感信息被企业利有。此外,各国在加强建设隐私保护法,这进一步束缚了企业收集、训练数据,造成数据孤岛。为摆脱上述束缚,谷歌
与传统的标准动态视频相比,虽然高动态范围视频提高了人类视觉体验,但目前市场上和大多数消费者使用的依旧是传统的SDR显示器,而HDR视频无法在传统SDR显示器上提供HDR视觉效果。同时实现HDR/SDR视频服务可以简单地通过在服务器端存储两个版本的视频文件,但这需要占用大量的存储资源。另一个替代方法则是设计向下兼容的双层HDR视频编解码系统,提供针对不同设备的弹性播放,即向SDR显示器端传输基本层(
联邦学习是一种以数据隔离为中心思想的分布式架构,在机器学习领域中受到广泛关注。在联邦学习架构下,中央服务器通过接收并聚合用户上传的本地模型参数训练全局模型。然而,尽管原始数据在联邦学习中没有被直接传输,恶意用户仍然可以通过上传设计好的模型破坏系统性能,甚至使其完全无法收敛。另外服务器也可能通过反向分析上传的模型窃取用户数据隐私。本文围绕联邦学习系统中的安全与隐私特性展开研究,并取得如下成果:(1)
智能交通系统的兴起为加快发展环境友好型智能交通生态系统带来了难得的机遇。以V2V(Vehicle to Vehicle)通信为核心技术的互联自动驾驶汽车队列智能控制具有较好的节能潜力。本文以后驱纯电动商用车队列为对象开展节能控制方法设计,创新性地提出了一种带能量管理策略(Energy Management Strategy,EMS)的分布式模型预测控制(Distributed Model Pred
自由活塞发动机是一种新颖的能量转换装置,以其可变压缩比、可变燃料、热效率高等优势,近年来倍受研究人员的关注。目前,自由活塞的往复运动控制问题仍然是制约其发展的一大挑战。本文在课题组多年研究的基础上,以一种对置活塞式自由活塞发动机为研究对象,对自由活塞的往复运动控制展开仿真与试验研究。具体包括以下几个方面的工作:(1)分析了自由活塞发电系统的工作过程。建立了各个子系统的热力学模型和动力学模型。在Ma
随着社会信息化和数字化的发展,数字视频技术在军事作战、安防监控和自动驾驶等领域得到广泛应用。人眼对色彩的变化极为敏感,但低照度环境下采集的视频色彩丢失、质量退化严重,极大的限制了夜间安防、自动驾驶等领域的发展。因此,增强彩色低照度视频,提升视频质量,更有效地获得场景信息是当前研究的重点。本文以FPGA为核心,基于低照度视频增强算法,设计了一款小型化、实时彩色低照度成像系统。主要研究内容如下:为取得
当前,世界各地由相继故障引起的大停电灾难时有发生。因此,全方位地分析和研究相继故障过程对保障电网安全稳定运行具有重要意义。本文基于电网仿真数据,借助网络理论和强化学习方法,对电网相继故障过程及其控制进行了研究。主要研究内容如下:1)针对考虑关键线路的智能电网攻击方法,研究了基于强化学习的顺序攻击方法,并提出了改进的强化学习探索策略。相较于已有的电网攻击方法研究,考虑关键线路的攻击方法研究更符合电网
本文研究了基于4D毫米波雷达与IMU(Inertial Measurement Unit,惯性测量单元)融合的车载SLAM(Simultaneous Localization and Mapping,同步定位和地图构建)技术,分析了基于4D毫米波雷达与组合导航系统的数据预处理算法,研究了基于Cartographer的定位与建图优化算法,具体实现了一种基于4D毫米波雷达与IMU融合的车载SLAM系统
隐蔽目标的探测一直都是军事上重点研究的领域,随着高光谱成像技术的发展,为这一领域提供了新的解决思路。利用高光谱数据高的谱间分辨率,可以更精准的反映目标和背景的光谱特性,从而提取出隐蔽目标。但高光谱数据冗余信息多、数据量大、空间分辨率低,为后续隐蔽目标探测带来了极大的干扰。本文通过研究高光谱降维技术,去除冗余信息,减少数据量。对于高光谱数据空间分辨率低的问题,考虑到多光谱数据具有较高的空间分辨率,但
传统的基于监督学习的图像分类系统由于深度学习技术和常见类别的大规模数据集的快速发展而取得了良好的效果。Image Net数据集上的一些方法在top-5上已达到95%以上,这已经超出人类水平。然而,由于世界上的物种数量庞大,新的物种不断产生且难以获得,所以不可能在一个分类模型中包含所有的类别。因此,现在的挑战是如何使预先训练好的模型能够泛化到新的类别,而不需要收集带有结构化注释的新训练示例。零样本学