Boussinesq方程组时空衰减性质研究

来源 :首都师范大学 | 被引量 : 1次 | 上传用户:yc513485587
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文考虑如下Boussinesq方程组的Cauchy问题:ut+(u·▽)u+▽p=γ△u+θf,(x,t)∈R3×(0,+∞),θt+(u·▽)θ=ε△θ,(x,t)∈R3×(0,+∞),divu=0,(x,)∈R3×(0,+∞),u(x,0)=u0(x),θ(x,0)=θ0(x),x∈R3. 这里u(x,t)=(u1,u2,u3)表示流体速度,θ(x,t)表示温度,p(x,t)表示压力函数.f(x,t)=(f1,f2,f3)表示给定外力,u0(x),θ0(x)表示流体初始速度和温度,γ≥0,ε≥0分别表示流体粘性系数和导热系数. 本文主要研究Boussinesq方程组弱解和强解的加权估计.本文内容分为如下三个部分:1.构造Boussinesq方程组的逼近解并且给出逼近解的积分表示.利用Boussinesq方程组的线性化构造逼近解,利用Stokes方程组与热方程基本解,推导出逼近解的积分表示. 2.Boussinesq方程组逼近解在L2(R3)中的加权估计.这一部分我们让初值u0,θ0和外力函数f(x,t)满足一定的条件,对逼近方程加权后再积分,利用Holder不等式、内插不等式、嵌入不等式等,在L2(R3)中得到逼近解的加权衰减估计,并因此得到了弱解的空间加权估计. 3.Boussinesq方程组逼近解在Lp(R3)(p>3)中的加权估计.让初值u0,θ0和外力函数f(x,t)满足一定的条件,在u0,θ0的L1,L2范数很小的假设下,对所出现的奇异积分作细致的估计和讨论,在Lp(R3)(p>3)中得到逼近解的时空加权衰减估计,并因此得到了强解的时空加权估计.
其他文献
高考政治复习是复杂的系统性工作,在新课程标准下,高考政治复习教师只有基于新课程标准不断对复习策略进行优化,才能够促使复习教学效率得到进一步的提升,保证学生取得良好的
近年来,在网络经济学、环境科学、互联网技术等许多领域产生的大数据,使得许多传统的数据处理及分析算法已不能满足数据急速增长的需求。解决这一问题的方案之一是针对不同数据
众所周知,农作物的生产是国民经济的基础,害虫爆发是一种突变现象,对农作物造成极大危害,考虑经济阈值的害虫防治是十分必要的.在此背景下,研究害虫种群尖角突变模型的定性分析和
近年来,孤子方程的可积性研究成为非线性科学研究的热点问题。国内外学者基于李代数,通过构造谱问题,利用屠格式,获得了一系列Liouville可积的孤子方程族,并利用迹恒等式得到了它
在教育体制不断改革和完善的背景下,对教学活动的开展提出了更高的要求,教师在开展教学活动过程中,不但要向学生传授丰富的知识,而且要将培养学生探究问题能力作为主要目标.
学位
同伦算法是一种大范围收敛的算法,对初始值没有严格限制,它开辟了求解非线性方程组的新途径。由于非线性系统的复杂性,有时很难直接求得相应方程组的解,这时构造一个容易求解的方
本文讨论两种美式期权定价数值方法。第一种是加法模型方法,它通过与美式期权定价分解公式相结合得到美式期权价格的近似值。第二种方法是最小二乘Monte-Carlo方法,它通过对条
新课程改革要求初中思想品德教学要坚持“以学生为本”,以提高学生的心理健康,培养学生良好的心理素质和品德操行,为了达到新课改教学目的和要求,越来越多的教学工作者开始关
图像分割作为一种重要的图像处理技术,不仅受到人们的广泛重视,同时在实际中得到大量的应用。近年来,基于偏微分方程的图像分割方法作为一新兴的研究领域,因其理论体系比较成熟和