【摘 要】
:
模块化多电平换流器(Modular Multilevel Converter,MMC)具备谐波含量低、开关损耗小等独特的优势,但在高压直流输电时出现的直流故障严重影响电能传输质量。MMC-HVDC系统能快速有效的清除直流故障是保证系统可靠运行的前提,清除故障的途径大致有三种:交、直流断路器以及子模块拓扑。由于交流断路器有响应时间长,易损坏器件等缺陷,工程中不能单独使用;高压大容量直流断路器技术不成
论文部分内容阅读
模块化多电平换流器(Modular Multilevel Converter,MMC)具备谐波含量低、开关损耗小等独特的优势,但在高压直流输电时出现的直流故障严重影响电能传输质量。MMC-HVDC系统能快速有效的清除直流故障是保证系统可靠运行的前提,清除故障的途径大致有三种:交、直流断路器以及子模块拓扑。由于交流断路器有响应时间长,易损坏器件等缺陷,工程中不能单独使用;高压大容量直流断路器技术不成熟、成本高等缺陷,实际工程中难以实现;依靠子模块拓扑器件本身阻断电流,是使MMC具备直流故障闭锁能力的最佳方式。半桥型子模块(Half Bridge Sub Module,HBSM)具有结构简单、控制容易以及成本低的优势,但无法闭锁直流故障;全桥子模块(Full Bridge Sub Module,FBSM)能够阻断直流故障,但存在电容耦合作用,且损耗大,成本高。因此,对子模块进行改进,使其具备直流故障清除能力为可行的方案。本文主要研究内容如下:(1)首先,分析了HBSM拓扑的工作原理,发现反向并联的二极管无法阻断故障电流;接着对FBSM、串联双子模块(Series Double Sub Module,SDSM)、箝位双子模块(Clamp Double Sub Module,CDSM)、自阻型子模块(Self Block Sub Module,SBSM)四种具备故障阻断能力的拓扑的工作状态进行分析。分析了MMC拓扑结构以及MMC-HVDC系统的故障机理,并介绍了一种具有故障隔离作用的电流转移支路结构。(2)提出一种具有阻断电流能力的改进自阻型子模块(Improved Self Block Sub Module,ISBSM)。对于HBSM反向并联的二极管无法阻断故障电流,对HBSM拓扑进行改进。将ISBSM与HBSM按一定比例搭配,组成不同的混合式模块化多电平换流器。最后通过仿真对比验证了在两子模块各占桥臂总模块数一半时,故障抑制效果最佳,并分别分析了系统在不同位置发生接地故障时的故障抑制能力。(3)提出自阻型单极全桥子模块(Self Block Unipolar Full Bridge Sub Module,SB-UFBSM)拓扑。ISBSM虽具有一定的故障抑制能力,但存在过电压的问题。文章对全桥子模块(Full Bridge Sub Module,FBSM)进行了改进;分析了SB-UFBSM的工作原理,将其运用到故障时的SB-MMC结构中,详细分析了SB-UFBSM在闭锁前和闭锁后的故障清除能力。为适应工程应用,对功率器件进行耐压、控制分析。(4)将SB-UFBSM与HBSM两种拓扑以一定比例组成混合式MMC,分析并选择了适合于此MMC结构的控制策略,仿真得到了该混合结构的最佳搭配数量。将混合式MMC与SB-UFBSM构成的MMC两种方案进行对比,仿真结果验证了前者随着HBSM模块数量的增加故障抑制能力减弱,而SB-MMC结构对故障的清除能力较强。在仿真软件PSCAD/EMTDC中,结合一种具有辅助阻断故障电流的转移支路结构来搭建模型,对SB-MMC的故障清除能力进行仿真验证。最后对比分析了不同子模块的经济性,并分析了有电流转移支路的MMC结构具有良好的经济性。
其他文献
近水源区输电线路杆塔大多位于池塘、湖泊附近或地下水源丰富的地区,水源电阻率要远远低于周围土壤电阻率。靠近水源的土壤电阻率较小,远离水源的土壤电阻率较高。因此,水源区土壤结构可视为水平或垂直分层土壤结构。而传统输电线路杆塔接地方式多采用将自然接地体(混凝土桩基)与人工接地体(水平或垂直接地体)组成的接地装置敷设于土壤之中。混凝土桩基具有尺寸大、埋设深、内含钢筋数量多的特点。当自然雷击输电线路杆塔时,
在过去几十年,对高效能量存储设备的迫切需求刺激了对于超级电容器研究和商业化的不断发展。而多孔碳材料因原料易得、制备简单、比表面积高、孔结构发达等优点,被广泛应用于超级电容器,特别是双电层超级电容器。多孔碳材料的电容性能主要受到比表面积、孔径分布的影响,这些孔参数可以通过改变活化条件来调控。本文以碳分子筛为碳源,通过改变活化条件制备了15种具有不同孔结构的多孔碳电极材料,并研究了所制备碳材料在7种水
自发现超导现象以来,人们对于新型超导材料的探索热情只增不减,各种类的超导体相继被发现。2008年发现的ZrCuSiAs型结构的超导母体LaFeAsO,由萤石型结构[La2O2]2+层和反萤石型结构[Fe2As2]2-层构成,且在低温下呈现反铁磁自旋密度波态。后续研究发现,电子型、空穴型及部分同价元素替代都可以压制体系的反铁磁基态,并引发超导。说明该类结构具有极强的元素替代适应性。2016年,我们组
我国农药生产量、使用量一直位居全球第一,大量农药的使用不仅危害环境,同样会危害人体健康,国家因此大力发展农药替代技术,实施绿色农业。电生水植保技术是一种无污染、无残留的绿色植保技术,为农药替代指出了一个新思路。本文针对大田经济作物对农药替代型植保技术和作业装备的需求,基于电生水技术,将电生水植保技术与高地隙作业底盘技术相结合,设计了一款电生水高地隙生态植保车,从源头上解决了农药减量增效,为现代农业
压延铜箔具有导电、导热性能好以及耐弯折性能优异等特点,广泛应用于航空航天、电气仪表和新能源汽车等领域。铜箔经过冷轧工艺加工成形,存在延伸率低的问题,另外,压延铜箔表面粗糙度低导致其剥离强度低。目前,主要通过退火处理来提高其延伸率,通过粗化处理来提高其剥离强度。因此,本文以轧制银铜板、银铜箔为研究对象,研究轧制银铜板、银铜箔退火过程及粗化处理组织与性能的演变规律。本文选用管式炉对轧制银铜板、银铜箔进
在全球范围内,心血管疾病已经严重威胁人类的生命健康,具有高患病率、高致残率、高死亡率的特点,近年来居于疾病死亡的首位。目前,介入治疗成为治疗心血管疾病的主要手段,具有损伤小、安全性高、效果明显等优势。镍钛合金具有奇特的形状记忆效应和相变伪弹性,其机械性能、物理性能以及生物相容性优越,认为是理想的生物工程材料。镍钛合金心血管支架利用激光切割工艺成形,切割后的支架表面产生热损伤,同时形成残余拉应力、热
随着能源短缺和环境问题的出现,未来的世界能源结构必然会向可再生能源方向倾斜,可再生能源中太阳能占比将会达到较高的水平。随着光伏产业的大力发展,其在电力生产方面所占的比重将会日益增加,但由于光伏电站大多建立在复杂的环境中,运行过程中难免会出现各种故障,对光伏阵列故障进行有效诊断是亟需解决的问题。本文的主要研究工作如下:(1)光伏电池及光伏阵列模型的建立。本文首先对光伏电池的发电原理及数学模型进行了研
气体传感器是一种可以对气体进行识别和监测的传感装置,其在环境保护、工业安全、医疗诊断等领域体现出重要的应用价值和广泛的应用需求。传感器件的设计和气敏材料的优化是制备性能优良气体传感器的关键。因此,开发性质稳定的气敏电极以及构筑性能优越的气敏材料成为研究气体传感器的重中之重。本文的主要工作是利用光刻技术制备图案化叉指电极的FTO导电玻璃作为新型气敏电极,采用液相法合成氧化锌(Zn O)气敏材料,将其
棉花作为我国主要经济作物,广泛应用于精细化工和纺织,在国民经济中占有重要地位。在棉花的生长过程中,氮素和叶绿素是衡量棉花长势状况的重要农学参数,但实际测量程序复杂,时效性差。通过无人机遥感平台实现棉花氮素和叶绿素快速、无损的动态监测,对棉花的配方施肥与营养诊断具有重要的指导作用。本研究于2020年6月到8月在山东棉花研究中心试验站展开,设计不同品种、覆膜处理和氮肥梯度的棉花大田试验,利用Phant
当今社会,人们对能源的需求越来越大,而且化石能源越来越短缺,更重要的是,由此造成的环境污染也越来越严重。面对这种形势,人们只能致力于开发可再生能源,其中太阳能无疑是一个不错的选择。而太阳能电池是对太阳能利用最有效的综合发电方式之一。对于太阳能电池来说,实现太阳能转换和开发应用的关键指标是要有较高的光电转换效率和较低的制备成本。近年来,研究表明量子点(QDs)的消光系数比较高,可以吸收大部分太阳光,