【摘 要】
:
第二次量子革命已经蓄势待发,目前学者们对量子计算和量子通信这两大领域研究如火如荼.而量子计算和量子通信的重要前提是准确获得量子系统内部参数以达到后续对量子系统进行控制的目的.量子参数估计正是一套关于量子系统中物理量的测量和推断的理论,其核心课题是利用测量数据获得未知物理量的高精度估计值,其研究成果已被广泛应用于量子陀螺仪、量子频标、引力波探测、原子钟、量子成像以及量子雷达等领域.量子参数估计不仅是
论文部分内容阅读
第二次量子革命已经蓄势待发,目前学者们对量子计算和量子通信这两大领域研究如火如荼.而量子计算和量子通信的重要前提是准确获得量子系统内部参数以达到后续对量子系统进行控制的目的.量子参数估计正是一套关于量子系统中物理量的测量和推断的理论,其核心课题是利用测量数据获得未知物理量的高精度估计值,其研究成果已被广泛应用于量子陀螺仪、量子频标、引力波探测、原子钟、量子成像以及量子雷达等领域.量子参数估计不仅是技术进步的必然产物,反过来亦可推动现代物理学的发展.本文分别基于开放量子系统参数估计模型和腔光机械系统讨论了未知量的估计精度极限和值估计方法.在估计精度方面,针对连续弱测量下的开放量子系统的任意内部参数估计问题,提出了Fisher信息的数值计算方法以及精度优化方法.在值估计方面,基于量子测量数据,提出了利用假设检验快速从备选参考值中选出最接近真实值的值区分估计方法.此外,基于光场的实时输出数据给出了一类腔光机械系统的时变外力的无偏估计值,并推导了理论上的估计精度.主要研究内容如下:1)Fisher信息的数值计算方法.本文构建了基于连续弱测量的量子参数估计模型.在此基础上,基于Metropolis Hastings算法和Makov Chain Monte Carlo积分提出了一种数值计算Fisher信息的新算法.利用该算法,可以通过选取不同的测量方案对估计精度进一步优化.本文还基于该算法探讨了不同测量算符和测量效率对Fisher信息的影响.值得注意的是,该算法可以推广到d维开放量子系统单参数估计精度的数值计算.2)高效的值区分参数估计.基于弱测量下的开放量子系统参数估计模型,并且在已知待估参数备选值的前提下利用测量数据提出了一种高效的值区分参数估计方法.依据量子随机主方程和测量输出,利用贝叶斯推断推导了假设检验中各假设的后验概率随时间的演化.在提出的贝叶斯准则下给出了假设检验区分效果的量化指标——平均错误概率.以二维超导量子比特的哈密顿量参数为例,在验证所提出的假设检验方法在值区分上的可行性的同时,通过对比基于最大后验准则和贝叶斯准则下平均错误概率达到同一阈值的运行时间说明了本文提出的估计方法的高效性.3)腔光机械系统的实时外力估计.基于腔光机械系统的哈密顿量给出了该系统动力学演化的量子Langevin方程.通过弱耦合消除了光学模型的演化,获得了光场的输出方程,使得系统的演化与测量输出可以用线性高斯随机方程描述.从而将腔光机械系统时变外力的估计问题转化为线性高斯系统的时变输入估计问题.利用无偏最小方差Kalman滤波得到了系统状态的无偏估计值,再基于系统状态和外力之间的关系导出了时变外力的无偏估计值和对应的估计精度.通过Monte Carlo实验验证了所提出的时变外力估计算法的可行性,并分析了温度等因素对数值精度的影响.
其他文献
手写笔迹是一种典型的行为生物特征。基于手写笔迹进行个人身份的认证与识别在当今社会有着诸多应用情景,主要包括手写签名认证与笔迹识别两个方面,前者在行政管理、银行办公、合同签署、信用卡交易等场景下有着广泛应用前景,后者在司法笔迹鉴定与古籍文档研究等领域发挥着重要价值。手写签名认证的难点在于书写者的签名常常具有较大类内差异,且存在被伪造的可能性。更重要的是,由于签名采集困难、数据集规模通常较小,该领域对
有机太阳电池(OSCs)由于具有效率高、质量轻、柔性可弯曲、适应大规模卷对卷生产等优势而受到各界的关注。从发展初期的富勒烯受体如PCBM到近年的非富勒烯小分子受体,促使OSCs器件效率得到了巨大的飞跃。目前,报道的最高效率已经超过了18%。在OSCs发展过程中,聚合物给体材料作为活性层的重要组成部分发挥了不可或缺的作用。目前常见的聚合物给体大多采用给电子单元(D)结合吸电子单元(A)的D-A结构,
汽车复杂系统中不同的材料属性、结构尺寸和形状会对环境载荷产生不同的热响应,从而使得汽车内外热环境呈现出显著的动态非均匀特性。一方面,在汽车短时间运行过程中,非均匀分布的太阳辐射和温度等环境载荷以及不规则运动的通风系统气流共同施加在汽车乘坐空间,乘员舱热环境在时空分布上呈现出高度的差异性,由此引发不同位置乘员之间以及乘员身体不同部位之间皮肤温度响应和热舒适不一致的问题。另一方面,在长时间的服役过程中
汽轮机、风机、压缩机等大型旋转机械转轴需要采用液体动压滑动轴承支承,轴承-转子系统的动力学性能直接决定旋转机械能否可靠、安全、连续地运行。旋转机械的轴承-转子系统在高速、重载的工作环境下会产生结构振动,从而影响整机的工作性能。在各类滑动轴承中,可倾瓦轴承较常规固定瓦轴承更具优势,但其传统结构存在高复杂度、高成本、易磨损等缺点。本文以一种轴瓦浮动、具有双层油膜结构及可倾瓦特征的自生静压油膜轴承为研究
碳化钨(WC)具有高硬度和耐腐蚀等优点,但其缺点是断裂韧性较低。而添加了钴(Co)等金属粘结剂之后的WC复合材料则可以在硬度和断裂韧性上取得平衡,被广泛应用于切削刀具、矿用工具和耐磨零部件等领域。然而,金属粘结剂的加入也引起了耐腐蚀性和高温断裂韧性的降低。因此,无粘结相WC材料的研究逐渐得到开展。对此情况,一般首先借鉴传统陶瓷基复合材料的增韧方式,选择其它陶瓷相颗粒或者纤维以及高弹性模量碳纳米材料
铝合金以其优异的高比强度、良好的导热性能和低廉的成本,一直是散热部件的主要制造材料。随着无线通讯技术的快速发展,通讯系统及其设备向着高度集成化、高功率化及轻量化等方向发展,无线通讯信号的频率也随之增加,这对通讯系统及其设备的散热性能提出了更高的要求。5G通讯基站的有源天线单元(Active Antenna Unit,AAU)的密封壳体一直采用压铸铝合金制造,但以ADC12为代表的商用铸造铝合金导热
华南建筑学人自20世纪20年代到60年代,创作了一批在全国产生较大影响的建筑精品,并结合建筑创作实践自觉探索岭南建筑创作理论,薪火相传、一脉相承,形成了内容丰富、特色鲜明的建筑创作思想。他们探索了一条具有岭南特色的建筑创作之路,还积极推进了华南建筑文化与外界的交流与传播,也影响了现当代中国的建筑创作实践。对这一时期华南建筑学人建筑创作实践与理论的归纳总结、对其建筑创作思想的提炼,也有利于丰富、深化
由于能源、资源和环境问题的日益突出,以生物质为底物经微生物转化为生物燃料及高附加值产品以其经济、环保及可再生等优势成为研究热点。我国是一个农业大国,木质纤维素储量特别丰富,若水解不完全,可获得发酵性的纤维二糖、葡萄糖和木糖;若完全水解则获得葡萄糖和木糖(质量比约为2:1)。绿色生物制造的经济性取决于生物催化剂能否高效共利用木质纤维素水解产生的纤维二糖、葡萄糖和木糖。实验室自主筛选的嗜热厌氧杆菌(T
随着社会发展,人们对空间探索、资源勘探、医疗诊断、辐射监控以及安全检查等领域的需求急剧增长,闪烁材料在这些领域中扮演极其重要的角色,其中闪烁晶体性能最为优异,但其面临成本高昂、工艺复杂、加工苛刻以及难以制备高分辨率闪烁光纤阵列等现实情况,因而开发性能优异、成本可控、加工简单的新型闪烁材料愈发受到科研工作者地重视。闪烁玻璃因其工艺简单、组分可调、成本可控且可制备柔性光纤及高分辨闪烁光纤阵列等诸多优势
AlGaN基LED芯片是新一代固态光源,具有节能、寿命长、用途广泛、波长从深紫外到蓝光波段连续可调等优势,可用于医疗消毒、工业固化、植物生长、显示照明等各个领域,而这些新型应用场景对LED外量子效率提出了更高的要求。外量子效率等于内量子效率乘以光萃取效率。内量子效率与材料晶体质量有关,不在本文的讨论范围内。而光萃取效率是指射出芯片的光在光源总功率中的占比。因此,提高光萃取效率主要面临三大问题,(一