论文部分内容阅读
分层对流流动是农业气象环境中一种常见的流动形态,存在水平速度梯度的大气对流边界层(Convective Boundary Layer,简称CBL)是其中典型的一种。由于存在水平速度剪切,其流场特性与纯对流大气CBL存在明显的差异,因此对剪切CBL湍流卷吸和混合过程的流场特性及相关特征量之间的标度关系开展相关研究,对进行农业环境气象评价、荒漠地区干旱监测分析等生态系统演变评估和大气质量监测具有极其重要的科学意义。本文以水平均匀、干燥大气CBL为研究对象,通过大涡模拟和对流水槽实验,开展了剪切CBL湍流卷积特性研究。对6000 m×6000 m×2000 m空间的大气CBL进行了大涡模拟(Large-Eddy Simulation,简称LES)计算,开展了不同速度差、位温梯度及浮力通量对剪切CBL流场湍流特征影响的研究。(1)卷积层的形成受水平方向剪切效应和垂直方向浮力效应交叉作用影响,热泡、速度云图呈现湍流间歇性和各向异性特征。(2)混合层以稳定小涡湍流为主,受剪切作用影响计算域内地面温度峰面沿展向呈两条状分布,反映了卷积涡特征尺寸约为计算域宽度的1/4~1/3。(3)通过研究浮力通量的垂向变化,发现卷积层速度差及地面浮力通量对卷积过程有促进作用,卷积层高度向速度高一侧偏移;而自由大气层的位温梯度抑制卷积层厚度的增长,特别是对卷积层上限的影响更为明显。(4)研究结果还显示在弱剪切强位温梯度情况中发生了剪切抑制卷吸的现象,其余情况随速度差的增大而增大。剪切所产生的湍动能促进卷积,使得卷吸通量比增大,而近地层剪切应力没有对卷积层湍动能产生明显影响。(5)卷积通量比在0.176~0.385范围,除弱剪切工况外,其余工况下相比纯浮力CBL中的0.2有明显增加。在特征量参数化研究方面,进行了推导和验证:(1)基于CBL“一阶模型”的湍动能方程,分别了计算剪切和浮力湍动能的产生和消耗项,建立了剪切产生的湍动能用于促进卷积发生部分比例的计算公式,结果显示该比值在0.3~0.38范围内,且具有随剪切增强而略有增加的趋势。(2)根据模拟数据分析了现有卷积层厚度标度关系模型,结果显示由于其不能体现边界特征参数对卷积过程的综合影响,造成模型预测失准或应用受限。本文采用位温梯度代替卷积层位温阶跃值作为特征参数,并在特征速度尺度中引入速度差,充分考虑剪切对卷积的影响,建立了无量纲卷积层厚度△(?)/(?) i与修正浮力理查森数RiNC之间的△(?)/(?) i=1.26RiNC-1/2的标度关系模型(这里△(?)和(?)i分别为卷积层的厚度和高度)。所建立的新的标度关系与Martin和Wyngaard的大气模拟数据及Boers和Eloranta、lothon等人实际大气雷达测量结果具有很好的一致性。设计和制作了利用粒子测速技术(Particle Image Velocimetry,简称PIV)测试剪切分层对流流动的实验台。通过实验水槽下层盐水和上层淡水之间的密度差模拟剪切CBL分层效果,通过上下层不同的流动速度实现剪切效应,并通过底部的淡水羽流模拟CBL地面输入的浮力通量。通过对在流速差为0~0.15m/s、底部浮力羽流流量为20~40 L/h、密度差为25~60 kg/m3边界条件下进行的分层对流实验,研究了存在剪切的分层流动流场特征和标度关系。(1)结果发现当上下层速度差较小时,速度剪切不足以克服粘性力形成卷积涡;当速度差在0.04 m/s以上时,在测试水槽分层界面出现湍流卷积涡的形成、发展和破碎过程,在大约12(?)i距离后形成稳定流动的中间卷积层。(2)以速度梯度最大值对应高度作为卷积层高度和其上下速度梯度为零作为卷积层上下限,对比分析了实验边界条件对卷积层高度和厚度的影响。结果表明,当底部浮力羽流流量增加时,上冲羽流促进了上层流体的卷积,卷积层厚度增长;增加速度剪切效应会促进卷积层的增长;而增加下层盐度会增大中间交界面的密度梯度,阻碍了卷积层的增长。(3)通过分析不同边界条件下的实验数据,建立了无量纲卷积层厚度与修正理查森数之间的标度关系,即△(?)/(?) i=1.17RiNC-1/2。该标度关系式与数值计算得到的标度关系式都反映了△(?)/(?) i∝RiNC-1/2的标度率,但系数上略有不同,本论文也对造成这个差异的可能原因进行了分析。