论文部分内容阅读
伴随人类文明发展,电能逐渐成为各行各业赖以生存的基石,同时也是人类日常生活发展的生命线,由于世界各地多次大规模停电事故,煤炭石油等化石能源的匮乏,温室效应的严重性,电力专家为改善能源结构,保证供电质量,优化环境发展,大力推行综合清洁能源的微电网系统。事实证明这一举措大大改善了全球供电结构,然而随着微网接入配电网,多网融合飞速发展,许多技术问题丞待解决,其中较为显著的就是由于微网中分布式电源供电的间断性,大量电力电子开关器件的使用等等,会造成较为严重的电能质量问题。基于微网中电能质量的复杂性,本文提出了一种新型基于多功能并网逆变器(Multifunctional Grid-Tied Inverter,MFGTI)的微电网谐波和并网电流补偿方案,既实现了可再生能源的集成,又同时实现改善公共耦合点的电能质量功能,具有一定的经济性与可行性。本文深入分析了微网中逆变器工作原理与控制策略,发现对于多逆变器系统在电流变换的同时往往输出功率没有达到额定容量,结合逆变器数字可控特性,考虑使用数字信号处理(Digital signal processing,DSP)芯片对其进行控制,充分利用并网逆变器剩余容量来进行谐波与并网指令电流补偿,以摈弃传统的额外治理设备的参与,有相当程度的经济性。首先通过各种MFGTI拓扑研究与比较,得出被控对象离散域传递函数,进一步分析其系统特性,同时结合微网中分布式电源,负载,储能等装置充分了解微网并网与孤岛运行特性,总结各种逆变器控制策略。其次综合多方面研究了用于补偿的谐波参考电流分量检测算法,主要从时频转换,坐标转换,滤波器分解等方面综合比较,分析各种策略优缺点,总结得出基于傅里叶算法与瞬时无功功率理论的策略在精准度,系统设计,可行性更胜一筹,再综合考虑准确性,复杂度,数字实现,微网环境特性等给出基于克拉克变换的并网指令电流计算和基于离散傅里叶变换的改进谐波分量计算策略,理论研究表明该方法通过滑动窗频移和相位修正能准确选择性计算特定阶次谐波,同时节约大量计算量。最后由于比例谐振控制器(Proportional Resonant Controller)对于特定频率信号的优秀跟踪性能,综合研究设计了该控制器各项参数选择,延时补偿以及离散化数字实现。论文基于MATLAB/Simulink软件,设计微网并网运行模型,并从各次谐波分量,并网指令电流等方面仿真实验,结果表明本文提出的微网电能质量治理策略在高电流畸变条件下的有效性与经济性。