论文部分内容阅读
碳化硅(SiC)材料具有宽禁带、高电子饱和漂移速率、高临界击穿场强、高热 导率等优良特性,在高频、高温、大功率、抗辐射等领域拥有极为广阔的应用前 景。随着无线通信技术的飞速发展,对硬件系统高功率密度、快响应速度的需求 日益迫切,基于SiC材料的肖特基栅场效应晶体管(MESFET)在微波射频领域具有 Si、GaAs器件无法比拟的优势,适合航天、微波通信、电子对抗、大容量信息处 理等应用。鉴于国内外SiC MESFET研究现状,本文从器件结构、数值仿真、可靠 性、制备工艺等方面对SiC MESFET开展了系统的研究分析。主要的研究工作和成 果如下:
(1)从工作机理的角度分析了SiC微波功率MESFET的器件特性,整合了准确 表征4H-SiC材料特性和MESFET器件工作机理的物理模型,并基于ISE-TCAD软件 建立了合适的4H-SiC MESFET器件模型,对器件的直流、交流、击穿特性进行了 模拟分析,并讨论了器件特性与关键结构参数的依赖关系,优化了器件结构,为 器件设计提供了参考。
(2) SiC与钝化材料之间高密度的界面态导致器件工作在较高频率时出现栅延 迟现象,影响器件的性能指标。为抑制界面态的陷阱效应,提出了一种新型隔离 层结构的SiC MESFET并设计了针对该结构器件制备的工艺流程。基于改进的陷阱 模型对栅长为0.6 lim的器件进行了特性模拟研究。结果表明,P型隔离层能有效地 抑制表面陷阱的影响并且能减小器件在大电压微波应用条件下的栅漏电容;P型隔 离层结合场板结构改善了栅极边缘的电场分布,同时能减小单一使用场板结构时 引入的寄生栅漏电容。新结构4H-SiC MESFET的最大饱和漏电流密度为460 mA/mm,在漏电压20 V的栅延迟抑制比接近90%。交流特性的分析结果表明,新 结构比埋栅一场板结构器件的特征频率(ft)和最高振荡频率(fm。。)分别提高了5%和 17.8%。
(3)基于电场调制的思想,在分析场板结构器件所存在问题的基础上,建立 了带栅漏间表面p型外延层的新型MESFET器件模型,模型综合考虑了高场载流子 饱和、雪崩碰撞离化等效应。利用所建模型分析了表面外延层对器件沟道表面电 场分布的改善作用,并采用突变结近似法对外延层参数与器件输出电流(ld。)和击穿 电压(VB)的关系进行了研究。经过优化的结果表明,选择P型外延层厚度为0.12 ym, 掺杂浓度为Sx1015 C111-3,可使器件的VB提高33%而保持Id。基本不变,在一定程度上 改善了导通电阻和击穿电压之间的矛盾。
(4)为进一步提升器件的频率特性,将栅下缓冲层结构应用于SiC MESFET 中,并结合P型隔离层使器件的特性得以整体性提升。在钝化层和沟道之间引入的 p型隔离层抑制了表面陷阱的影响,并改善了栅极边缘的电场分布。另一方面,在 栅极下面引入的轻掺杂N型缓冲层降低了扩展在导电沟道中的耗尽层,从而提高了 输出电流Id。并减小了栅电容C(。论文还对器件特性与结构参数的依赖关系进行了研 究,获得了优化的设计方案。在击穿电压VB有所提高的情况下,栅下缓冲层结构 MESFET的最大饱和电流密度为325 mA/mm,与传统结构MESFET的182 mA/mm 相比有将近7g%的提升。此外,应用新结构的MESFET的特征频率和最大振荡频率 较传统结构MESFET分别提高了27%和28%。
(5)在分析短沟道器件所存在问题的基础上,针对深亚微米SiC MESFET提出 了改进型的异质栅结构,并结合肖特基栅势垒降低、势垒隧穿等物理模型,分析 了改进型异质栅结构对SiC MESFET沟道电势、夹断电压以及栅下电场分布的影 响。通过与传统栅器件特性的对比表明,异质栅结构在SiC MESFET的沟道电势中 引入了多阶梯分布,加强了近源端电场;另一方面,相比于双栅器件,改进型异 质栅器件沟道最大电势的位置远离源端,更好抑制了短沟道效应。此外,研究了 不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案,减小 了器件的亚阈值倾斜因子。为发挥碳化硅器件在大功率应用中的优势,设计了非 对称异质栅结构,提高了小栅长器件的耐压。
综上所述,本论文在传统SiC MSEFET基础上,提出了几种新型器件结构,通 过器件建模和特性仿真对新结构器件进行了系统的研究,并进行了较为深入的分 析和讨论,得到了一些有意义的结果,为SiC MSEFET的设计与研制提供了指导。