低温等离子体协同催化氨合成机理的一维动力学模型研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:suwenyin52
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氨是目前对世界经济有着重大影响意义的第二大工业生产化合物,被广泛应用在化学工业、农业、轻工业和纺织业等多个领域,且在电能储存领域有巨大的应用潜力,利用间歇性新能源多发的电合成氨,将电能转化为化学能储存起来。工业上合成氨的方法主要是Haber-Bosch工艺法,但高温高压的反应条件苛刻并且消耗大量的能量。因此研究者们一直在探寻新的替代方法。由于低温等离子体中存在较多的活性粒子(电子、离子、原子和自由基)可以显著地增强化学动力学,使得氮气和氢气合成氨的反应在常温常压下就可以发生,因而低温等离子体在催化合成氨领域具有较大的潜力。但是目前能量效率依旧比不上传统的哈伯工艺,这主要是缺乏对等离子体-催化剂协同作用的复杂机制的理解,需要详细的建模来深入研究等离子体催化机理。
  本文建立了大气压下板-板电极低温等离子体协助催化氨合成的一维等离子体动力学模型。模型考虑了47个粒子和379种反应。首先在仅有气相反应的条件下,研究氨合成的关键反应路径和重要粒子的产生和损失机理。研究发现NH自由基、H2分子与N2(或H2)分子之间的三体反应是生成NH3最重要的反应。NH3损失的主要途径是与电子碰撞分解,转化为NH2和H原子以及NH和H2分子。
  接着在气相反应的基础上考虑了表面反应,研究促进氨合成的主要表面反应和吸附粒子的机理,阐述等离子体和催化剂相互作用在氨合成过程中所发挥的效应,揭示氨合成的潜在机理。结果表明,表面吸附氢H(s)与吸附的自由基NH2(s)之间的Langmuir–Hinshelwood反应是产生氨的最重要机制,振动激发态N2分子的分解吸附有助于关键粒子N(s)的形成。气相反应和表面反应共同促进提高了氨气数密度。
  最后通过讨论不同影响因素下,包括施加电压、初始氮气与氢气的比例、催化剂表面总活性位点数、不同表面活性的催化剂材料及气体温度对氨合成的影响。仿真结果显示:随着外加电压的增加,氨气产量先增加之后又减小;N2:H2的比例为1:2时有利于氨的合成;当表面活性位点数目从1014增加到1018cm-2时,氨气产量略有增加了9.89%;采用表面反应性较强的Fe金属表面有利于提高氨的产量;当气体温度为300K时氨气产量较高。此外,本文的一维模型还显示了等离子催化氨合成反应器中的电场强度、电子能量和电子密度的空间分布情况。通过详细分析以上影响因素,有利于寻求最佳的反应条件,以使氨气产量达到最优值。
其他文献
随着动力电池等技术的不断完善,新能源汽车及其相关技术越来越成熟。由于人们生活观念的改变与不断革新的技术水平,以锂离子动力电池为能源的新能源汽车在未来很可能取代燃油汽车成为交通运输的主要工具。其中锂离子动力电池由于其比能量高,循环寿命长等优点如今成为新能源汽车主要的能量来源之一。但是锂离子动力电池仍然存在诸如充电耗时长,热稳定性差等缺点。除了对电池本身化学结构的改进,优化充电策略仍然是改善充电性能的重要途径。鉴于此,本文在详细的分析了多段恒流充电策略的基础上提出了一种自适应电流充电策略。并且建立了准确的电池
鉴于优异的绝缘性能,交联聚乙烯(XLPE)电缆被广泛地应用于电力系统中,但限于制造工艺不足和工作环境恶劣,电缆绝缘缺陷给电力系统的安全可靠带来了极大的隐忧,电缆绝缘检测已成为电力系统中重要的研究领域。目前检测手段中,耐压试验有破坏性,交流叠加法易受干扰,局部放电信号诊断识别困难。为精确判定电缆的绝缘性能,提出了一种全覆盖型叉指式电容传感技术,可用于电缆绝缘的长期无损检测,尤其适用于电缆接头处。对传
随着我国社会现代化建设的不断推进,各种敏感负载在人们的生产和生活中得到了广泛应用,保证电能质量符合这些设备的用电要求尤为重要。在电压暂降、电压骤升、电压谐波等各种电能质量问题中,电压暂降发生次数最多,对企业用户造成的损失最大。动态电压恢复器(Dynamic voltage restore,DVR)是针对电压暂降等问题而开发出的一种电能质量治理装置,可以在电压暂降发生时快速补偿负载电压,保证负载不受影响,且具有良好的动态特性,是目前解决电压暂降最经济有效的方案。本文设计了应用于中压配网侧的三相动态电压恢复器
随着能源危机和环境污染的日益严重,新能源电动汽车受到了国内外的高度重视。在市场和政策双重驱动下,近年来我国电动汽车销量增长迅速。电动汽车动力电池组通常是由比能量高、循环寿命长的锂离子电池单体构成,但锂离子电池的容量和充电速度极大影响着电动汽车的续航充电,因此制约电动汽车行业发展的锂离子电池充电相关技术受到了广泛关注。针对电动汽车锂离子电池充电速度和安全性等问题,论文对电池充电策略进行了相关研究并设计了电池充放电状态监测系统。
  本文针对锂离子电池充电相关技术开展了一系列工作,所取得的进展主要体现在
电力系统在遭遇强烈的外力因素(如极端天气等)的干扰时,自身的保护系统和安全措施仍有可能无法避免大范围的停电事故发生。在大停电事故发生后,对电力系统进行黑启动是挽回停电损失的重要补救措施。目前输电系统的黑启动技术研究已经比较深入和成熟,而针对配电网黑启动技术的研究还相对比较少。
  随着以光伏和储能为代表的分布式电源技术的快速发展和国家相关政策的支持,电力系统中的分布式电源渗透率持续上升。利用分布式电源进行黑启动为配电网黑启动技术的研究提供了新的思路。本文围绕基于分布式电源的配电网黑启动技术主要做了以
分布式电源参与并网导致了大量的谐波产生,严重影响电力系统的安全稳定性。无源滤波器的滤波效果有限,而有源滤波性能方面优势明显,具有较好的谐波抑制效果,逐渐成为治理谐波污染的重要手段。虽然有源滤波器虽有较好的谐波抑制效果,但也存在通带范围受有源器件带宽限制,需额外直流电源供电,且可靠性不高等问题。为了追求更好的滤波效果,本文创新性提出一种无源滤波技术与有源滤波技术相结合的混合滤波器,以达到更好的滤波效果。
  本文研究利用有源电力滤波器(Active Power Filter ,APF)对分布式发电系统
直流配电系统以其低损耗、运行灵活、便于分布式电源接入等特性成为了国内外的研究热点。由于其低阻尼、故障传播快的特点,故障的快速隔离与恢复是制约直流配网发展的关键。直流断路器作为分断直流故障的关键设备,可以在允许换流站不闭锁的前提下分断故障,能够满足直流配网对故障的快速隔离与恢复的要求,但也存在直流电弧熄灭难、电子器件成本高、分断电流时间长等研究难点。本文以现有的混合式直流断路器为基础,进行了以下研究:
  首先基于混合式直流断路器的基本原理对其在配网中分断故障电流的过程进行了建模与暂态分析;从分析中提
配电线路作为电力系统中分配电能、连接用户的基本载体,其安全运行水平直接关系到电力用户的供电可靠性。由于利用故障工频量的传统保护方法存在选择性和快速性难以兼顾的问题,近年来基于故障暂态量的保护方法受到越来越多的重视。本文针对故障暂态量容易受故障条件影响,不利于保护整定的难题,研究采用故障暂态量的配电线路边界保护方法。合理选择边界元件是保障边界保护性能的关键。首先,阐述了配电线路故障的暂态过程;然后,
用于永磁同步电机(PMSM)的模型预测控制(MPC)具有结构简单、动态响应快、能够处理多目标优化等优点,被认为是新一代高性能控制策略。双矢量预测电流控制(PCC)的稳态性能比单矢量PCC高,开关频率比三矢量PCC低,是一种较优的控制方法,不过仍然存在计算量大、算法复杂等问题。本文针对这些问题展开研究并提出了相应的改进方法。首先介绍了PMSM数学模型和双矢量MPC脉冲生成方法。详细阐述了单矢量PCC
随着真空断路器和并联电抗器在配电网中的广泛应用,由真空断路器开断并联电抗器时产生的过电压而引发设备绝缘击穿的事故频发,已经成为了一个不能忽视的问题。为了保证电气设备的安全和电网的稳定运行,避免由事故频发带来的经济损失,有必要研究并联电抗器的开断过程,找出导致事故发生的本质原因,从而采取必要的应对措施。
  本文主要从理论分析和仿真建模两个方面开展对真空断路器开断10kV并联电抗器产生的过电压的研究。
  首先,介绍了操作过电压和截流过电压的相关理论,研究了真空断路器开断10kV并联电抗器时产生