离子束溅射沉积多波长激光薄膜研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:jingcang_wu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着可调谐激光技术应用的发展,对多波长激光薄膜提出了较高要求:一是要求高反射薄膜的带宽更宽,当前因受反射镜带宽所限只能通过更换腔镜的方式来实现宽带激光的输出;二是要求激光薄膜的损伤阈值更高,目前非线性激光晶体薄膜的损伤阈值已成为制约中波红外激光器功率提升的瓶颈。针对高反射激光薄膜的带宽问题及多谱段非线性晶体减反膜的损伤阈值问题,开展理论和实验研究具有重要的科学意义和使用价值,将对可调谐激光技术的发展起到巨大推动作用。高性能宽带反射镜仅能通过全介质膜堆的方法实现,膜系结构具有层数多、总物理厚度大等特点,存在严重的应力诱导面形畸变问题,以及局部吸收谐振放大导致的反射率凹陷问题;多谱段减反射晶体薄膜,主要应用于中红外光学参量振荡激光器,该非线性晶体在光学性能和力学特性上均具有各向异性,且该元件工作于强激光环境中,种种原因导致该晶体薄膜元件易破坏、可靠性差。本文中膜层制备方法均采用离子束溅射沉积技术,膜层材料均选择氧化物薄膜材料体系。离子束溅射氧化物薄膜具有致密度高、缺陷少等优点,但其高压应力问题必须得到有效解决。另外,对于氧化物薄膜材料在中波红外的特性及应用报道极少。首先,针对氧化物薄膜光学常数精确表征问题,本文选择Tauc-Lorentz和Cody-Lorentz复合色散模型,重点对该复合模型的带尾吸收衰减规律进行修正,从而有效连接带间跃迁吸收和透明区的弱吸收。并以Ta2O5、Hf O2氧化物薄膜为例进行光学常数表征,结果表明拟合偏差明显减小;开展了薄膜光学特性与力学特性之间关联性的理论研究,揭示薄膜光学特性与力学特性的相互影响规律,为工艺调整提供依据。其次,针对离子束溅射氧化物薄膜材料高压应力状态、薄膜结构微缺陷问题,系统开展了氧充量对Ta2O5薄膜、Hf O2薄膜、Al2O3薄膜和Si O2薄膜的光学特性、微结构特性、应力特性等影响。同时,重点对比了不同溅射起始材料对Ta2O5薄膜、Hf O2薄膜特性的影响,建立了氧化物薄膜特性与工艺参数的关联性,特别是获得了针对氧缺陷控制的最佳工艺,降低激光与薄膜相互作用时氧缺陷诱导吸收造成薄膜热熔破坏风险。然后,通过系统开展薄膜退火后处理研究,建立了氧化物薄膜能带特性、红外波段光学特性与退火后处理的关系,获得了基于退火后处理技术进行薄膜应力调控的方法。特别是提出了基于正压背景下压力调控的低热应力引入薄膜后处理思路,采取用于光学材料压制的热等静压方法用于薄膜的后处理,与传统后处理方法相比,该方法可大大降低由于膜层-基底热膨胀系数差异而二次引入的热应力。最后,针对超宽带激光反射镜膜层应力导致面形畸变问题,提出了超宽带反射镜薄膜分离设计方法,在基板两侧设计等厚膜层以减小应力带来的面形畸变问题。然而该方法并不能减小膜层高应力状态,因此需在选取低应力膜层制备工艺的基础上,并在膜层制备后采用低热应力引入的热等静压方法进行后处理,降低膜层应力、提高反射镜可靠性。最终获得了在400~1200nm波段范围内平均反射率99.91%,面形精度为0.072λ的超宽带激光反射镜。针对中红外非线性ZGP晶体减反射多层膜的设计与制备,首先提出了基于添加Al2O3薄膜应力匹配层的光力一体化设计理念,解决ZGP晶体基底热膨胀系数各向异性带来的机械稳定性差的问题;同时,针对基底折射率各向异性、吸收基底光学常数难以精确标定问题,提出了基于基底折射率容差的减反射膜系设计方法。最后,采用离子束溅射技术制备了多谱段中红外非线性晶体减反膜,经测试激光损伤阈值可达到4J/cm2。
其他文献
在过去的几十年里,无线移动通信产业经历了巨大的技术创新和惊人的业务量增长。为了满足日益增长的智能终端连接量以及高速率通信的需求,超密集组网技术应运而生。超密集组网中,通过不同类型的低功率基站的密集部署,有效地提高单位面积的传输能力。这一能力可以用区域频谱效率进行描述。虽然区域频谱效率这一概念在上世纪90年代就已经提出,但是原有的分析模型均基于理想假设且不适用于超密集组网的应用场景。同时,小基站的密
导热系数、传热系数、边界形状等热参数在航空航天热防护、发动机散热、核电站安全等领域扮演十分重要的角色。其准确测量对安全运行及热防护设计等具有重要意义,然而受限于恶劣工作条件或空间等,往往无法通过测量直接获得。导热反问题方法为测量此类参数提供了一个有效途径。热参数测量受热损耗影响较大,因此热损耗条件下提高热参数的测量精度的测量技术研究,具有十分重要的科学价值和实用意义。换热或传热设备中温度更容易测量
随着空间在轨服务技术的发展,捕获非合作目标后的位姿控制已成为一个重要的研究领域。在捕获非合作目标后,服务航天器的结构布局和参数发生剧烈突变,使形成的组合体航天器动力学具有强耦合非线性和强不确定性,同时,控制系统的执行结构在组合体航天器中处于配置未知状态,这些都给捕获后组合体航天器的控制带来了极大的挑战。此外,由于非合作目标的质量特性未知,服务航天器在轨捕获后引起自身质量特性突变,使组合体航天器的质
高档数控机床是装备制造业的重要工具,是实现先进制造和现代化制造的基石,是实现高精尖技术及国防现代化的关键环节。全闭环伺服驱动系统作为高档数控机床最为重要的控制和执行机构,其位置控制误差直接影响了数控机床的加工精度。深入研究全闭环伺服驱动系统位置控制误差补偿技术,对推进高档数控机床国产化,提高高端制造装备自主性有着重要的意义。本论文在这一背景下,以全闭环伺服驱动系统为研究对象,从以下四个方面的关键技
近年来,我国体育竞技表演产业发展迅速,万人座席规模以上的大型体育馆建设数量逐年增多。在商业化运营模式引入背景下,大型体育馆运营职能及目标逐渐转变。空间整体作为运营核心资源对商业利用价值进行深度挖掘,一方面融合多样娱乐演艺活动以提高空间利用频率,另一方面通过提升服务性、体验性及应变性等增强空间吸引力,以实现空间运营收益目标。空间在与商业化运营模式适应过程中,功能配置、结构组织等不断演进,大型体育演艺
碳烟颗粒的生成、演化特性在低碳经济、环境污染、气候变化、人体健康、无线通信、红外遥感、目标识别等领域具有显著的学术价值和广泛的应用背景。碳烟颗粒的形貌特征参数是研究燃烧过程中碳烟生成的重要参考因素。发展碳烟诊断技术,准确测出碳烟颗粒形貌特征参数信息对于燃烧过程中碳烟的生成机理和抑制理论的研究非常重要。光学诊断方法因为其非侵入式测量的特性,能够在不干扰火焰燃烧的情况下得到碳烟的粒径、体积分数、组分等
红外透明陶瓷多晶镁铝尖晶石(MgAl2O4)以其优异的光学性能、机械强度以及高温稳定性使其成为应用于极端环境下的光学关键部件的理想材料,但是其稳定的化学结构及晶体结构也带来了极大的加工难度:高脆性使其在加工过程中极易造成表面脆性损伤,不易实现低损伤的塑性域加工表面,而其高硬度和弹性模量又会带来较大的刀具磨损,这些因素都使其成为高硬脆性难加工材料的代表。虽然镁铝尖晶石的合成制备技术经过几十年的发展已
随着电子产品的蓬勃发展,现有商业电池和超级电容器的体积能量密度和充放电速度已经很难满足应用需求,开发具有高体积比容量和高倍率性能的负极是锂/钠离子电池研究重点之一。TiO2具有循环稳定性高、安全、环境友好和价格低廉等优点,有望用于商品化锂/钠离子电池。但是,TiO2固有的电子电导率和离子扩散系数都比较低,限制了其电化学性能的发挥。纳米化及碳复合等手段能有效提升TiO2负极的电化学性能,但目前文献报
强化控制系统自组织、自诊断、自容错与智能化运行能力是未来航天器的重要发展趋势,星载物理信息系统的功能模块化、通信无线化也将成为系统集成的重要手段。模块化系统需要解决的主要问题是子系统间的通信问题,当采用网络将航天器控制系统各个环节进行连接时,系统的稳定性和性能对网络信道的带宽、传输频率等有较高的要求。需要指出的是,网络的带宽和通信频率常常是有限的,当带宽无法满足信号的传输负载或信号交互过于频繁时,
复合材料具有轻质、高强、可设计性强等优点,在现代工业和生活中得到广泛应用。然而,复合材料中基体与增强纤维的性能差异,以及基体与增强相间存在界面,使复合材料具有各向异性和优异的结构及功能特性,但也易受到微小损伤影响其性能。因此,复合材料在服役过程中经常会在负载应力、应变环境作用下出现基体破坏、纤维脱粘或断裂、层间开裂等内部损伤,这些内部损伤会不断扩展并最终导致复合材料发生灾难性破坏。因此,发展复合材