论文部分内容阅读
甲烷和低碳烷烃选择性氧化是多相催化和表面科学领域最具挑战性的前沿研究课题之一。本工作用微型催化反应评价装置结合X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)、电子自旋共振(ESR)、紫外漫反射光谱(UV-visDRS)和程序升温脱附(TPD)和程序升温表面反应(TPSR)等多种物理化学手段,研究了甲烷氧化偶联纳米钙钛矿型复合氧化物催化剂和丙烷氧化脱氢中孔硅基氧化物载体负载钒氧化物催化剂结构与催化性能,获得如下创新性研究结果:
1.发现钙钛矿型SrTiO3复合氧化物催化剂B位掺杂Zr4+、Al3+、或Mg2+离子可提高催化剂的甲烷氧化偶联(OCM)生成C2烃产物的选择性。并且,掺杂元素价态和掺杂量与催化剂表面吸附态氧物种浓度和OCM催化性能密切相关。用柠檬酸热分解法制得的SrTi1-xMgxO3-δ催化剂,随Mg2+离子掺杂量的增加,催化剂的CH4转化率和C2选择性增加,在x=0.1时达到最大值。进一步增加Mg2+掺杂量,催化剂的CH4转化率和C2选择性又明显下降。这不仅为前人基于OCM反应动力学模型提出的控制催化剂表面活性氧物种适当的浓度才能获得较高C2选择性的观点提供了直接实验证据,而且为选择掺杂离子种类和调整其用量以优化钙钛矿型复合氧化物催化剂的OCM催化性能提供了参考信息。
2.首次将纳米钙钛矿型复合氧化物用作OCM催化剂并发现具有较优良的甲烷低温氧化偶联催化性能。通过B位掺杂适量的Mg2+或Li+离子进一步优化了纳米钙钛矿型SrTiO3复合氧化物催化剂OCM催化性能。发现钙钛矿型复合氧化物催化剂表面吸附态氧物种和F中心均具有活化甲烷分子和形成C2烃产物的催化活性,但吸附态氧物种易使OCM反应中间体和产物深度氧化,而F中心具有低温活化甲烷分子和高选择性生成C2烃产物的特性,为开发甲烷低温氧化偶联高效催化剂提出了一个新思路。纳米氧化物粒子因表面原子配位不饱和(配位数低),其表面存在较多的F中心。纳米催化剂优良的甲烷氧化偶联催化性能与其表面F中心相关。
3.发现负载型钒氧化物催化剂载体孔结构是影响钒氧物种分散状态和丙烷氧化脱氢为丙稀催化性能的一个重要因素。V2O5/SBA-15催化剂因具有较大的比表面积和较大的孔径,不仅具有较高的丙烷氧化催化活性,而且具有较高的丙烯选择性。丙烷程序升温表面反应、丙烷脉冲和原位ESR实验结果提供了负载型钒氧化物催化剂晶格氧物种是丙烷氧化脱氢转化为丙稀的主要活性物种和CO2分子可以再生钒氧化物催化剂晶格氧物种的实验证据。
本工作所获研究结果不仅丰富了甲烷氧化偶联和丙烷氧化脱氢多相催化作用的科学知识,而且为开发甲烷和丙烷高选择性转化为乙烯和丙烯的新型催化剂提供了参考依据。
Selectiveoxidationofmethaneandlightalkanesisoneofthemostchallengingproblemsintermsofheterogeneouscatalysisandsurfacescience.Inthisdissertation,thestructureandcatalyticpropertiesofthenanoperovskite-typecomplexoxidecatalystsforoxidativecouplingofmethane(OCM)andthemesoporoussilica-basedoxidesupportedvanadiumoxidecatalystsforoxidativedehydrogenation(ODH)ofpropanehavebeeninvestigatedbymeansofmicroreactortestscombinedwithX-raydiffraction(XRD),transmissionelectronmicroscopy(TEM),X-rayphotoelectronspectroscopy(XPS),electronspinresonance(ESR),ultraviolet-visiblediffusereflectancespectra(UV-visDRS),temperature-programmeddesorption(TPD)andtemperature-programmedsurfacereaction(TPSR)measurements.Ithasbeenshownthatdopingthecationsoflowervalence(e.g.Mg2+,Al3+,Zr4+)totheBsiteofperovskite-typeSrTiO3catalystsresultsinhigherC2-selectivityforOCMreaction,andtheconcentrationofadsorbedoxygenspeciesonthesurfaceofcatalystsandcatalyticpropertiesforOCMarecorrelatedtothevalencestateandcontentofthecationsdoped.WithincreasingtheamountofMg2+intheBsiteofSrTi1-xMgxO3-δ,CH4conversionandC2selectivityfirstincreaseandthendecreaseremarkably.TheSrTi1-xMgxO3-δcatalystwithx=0.1hasthehighestCH4conversionandC2yield.Ithasbeenfoundthatthenanoperovskite-typecomplexoxidecatalystsexhibittheuniquecatalyticpropertiesforOCMreactionatlowtemperature(~650℃).Thecatalyticpropertiesofthesenanooxidecatalystscanbeimprovedbydopingthecations(e.g.Mg2+,Li+)totheBsiteofperovskite-typestructure.ItisfoundthatboththesurfaceadsorbedoxygenspeciesandFcenterofperovskite-typecomplexoxidecatalystscanactivateCH4andformC2hydrocarbons.However,theadsorbedoxygenspeciesonthesurfaceeventuallyresultsinthecompleteoxidationofthereactionintermediateandC2hydrocarbonproducts.Incontrast,FcentercanactivateCH4atlowertemperatureandleadtoformationofC2hydrocarbonswithhigherselectivity.TheuniquecatalyticpropertiesofthenanocatalystsarecorrelatedtothehigherconcentrationofFcentersduetolowcoordinationsurfaceatomsonthenanooxideparticles.Ithasbeenshownthattheporediameterofsupportexertsgreatinfluencesonthedispersionstateofvanadiaandcatalyticpropertiesofvanadiacatalystsforoxidativedehydrogenationofpropane.AmongSBA-15,MCM-41andsilical-gelsupports,SBA-15supportedvanadiacatalystshavethehigherselectivitytopropylenebecauseofitslargerporediameterandhighersurfacearea.IthasbeenrevealedthatthesurfacelatticeoxygenspeciesofsupportedvanadiumoxidecatalystsaremainactivespeciesforoxidativedehydrogenationofpropanetopropyleneandCO2moleculecanregeneratethelatticeoxygenspeciesofsupportedvanadiumoxidecatalysts.Ourresearchresultshavenotonlyenrichedthescientificknowledgeofheterogeneouscatalysisinoxidativecouplingofmethaneandoxidativedehydrogenationofpropane,butalsoprovidedtheusefulinformationfordevelopingthenovelcatalystsforhighlyselectiveoxidationofmethaneandpropanetoolefins.