几类非线性动力系统的动力学行为分析与控制

来源 :广西师范大学 | 被引量 : 4次 | 上传用户:fy9876
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周知,在工程、经济等诸多应用领域存在着大量的非线性问题,它们均可由一些非线性动力系统来描述.在一定的参数条件下,非线性动力系统会出现混沌运动,从而给系统的运行带来一些不可预估的影响,因此,研究非线性动力系统在一定参数条件下的动力学行为是非常有必要和有意义的.运用混沌理论中的分析方法和混沌特征量可以全面地揭示非线性系统的动力学行为,从而为非线性动力系统的研究提供有效的途径.由于混沌运动具有初值敏感性和长时间发展趋势的不可预见性,因此,混沌控制就成为混沌应用中的关键环节,具有很高的研究和应用价值.当混沌有害时,要设法控制混沌;而当混沌有益时,则可以利用混沌.此外,由于现实生活中,随机干扰如噪声无处不在,因此,非常有必要在存在噪声干扰的情形下,研究非线性动力系统的动力学行为和混沌控制问题.基于混沌及混沌控制理论,本文研究了广义增广Lü系统和Lü系统的混沌控制问题;研究了舰船电力系统的动力学行为、混沌控制以及随机激励下舰船电力系统的混沌运动等问题.  主要内容如下:  第一章,介绍了混沌及混沌控制的历史背景、发展过程和研究现状.  第二章,研究了广义增广Lü系统的混沌控制问题,基于Lyapunov稳定性理论,分别设计了比例微分控制器和自反馈控制器,将处于混沌运动状态的系统稳定到其5个平衡点上,数值仿真结果证实了控制器是有效的.  第三章,研究了Lü系统的混沌控制问题,基于状态反馈精确线性化方法设计了控制器,通过数值仿真,验证了控制器的有效性.  第四章,首先利用数值方法研究了舰船电力系统的动力学行为,得到了系统产生混沌时的扰动参数临界值bc;其次设计了参数自适应控制器,将系统由混沌运动稳定到期望目标点,并通过数值仿真,对控制器的有效性进行了验证.  第五章,首先研究了随机参激和随机外激两种情形下,舰船电力系统的动力学行为,利用随机Melnikov方法,推导出系统出现混沌的临界条件.研究结果表明:在两种情形下,随机激励强度σ与系统出现混沌时的扰动参数临界值bc均成负相关关系,即随机激励强度σ的增大,降低了系统出现混沌时扰动参数b的临界值bc,增加了系统出现混沌的可能性;通过对两种不同随机激励下的结果进行比较后,得出了随机参激激励比随机外激激励更容易使舰船电力系统出现混沌的结论;利用本文推导出的临界条件,得到了没有外部随机激励时,系统出现混沌的扰动参数临界值,与已有结果相比,本文得到的结果更为精确.其次,研究了系统谐和激励中含有随机激励相位的情形,研究结果表明:当随机激励强度满足一定条件时,随机激励相位可以实现舰船电力系统的混沌抑制.  第六章,对论文进行了全面的总结,指出了进一步研究的方向.
其他文献
为了提高微生物连续培养过程中的人为可控性和效率,往往需要调节和控制培养环境.而在培养过程中,可能存在一些不确定的因素(如时滞等),它们的存在会对系统的动力学行为产生一
“高山青,涧水蓝,阿里山的姑娘美如水呀,阿里山的少年壮如山……” 这些小时候耳熟能详的旋律,多年来一直只能是遥不可及的梦想,随着台湾个人游签证的逐渐开放,从跟团到自由行,越来越多人可以亲自到台湾来领略她的魅力了。  台北——  北投温泉:顶级的泡汤享受  来到台湾,一定不能放过到北投泡温泉的机会!因为在台北的酒店和北投的皇家季节是一家集团旗下的,所以的接驳车可以直接送过去那边的温泉酒店。北投给人一
期刊
本文主要研究A-Dirac方程解的存在性问题以及关于非齐次A-Dirac方程的一些解的不等式。A-Dirac方程是对拟线性椭圆方程-divA(x,▽u)=0和Dirac拉普拉斯方程的重要推广,在位势理
变分不等式理论是应用数学中一个十分重要的研究领域,它在非线性最优化理论、微分方程、控制论、对策论、社会经济平衡理论等领域有着广泛的应用,而变分不等式的基本问题之一
时滞是客观世界和工程中普遍存在的现象,在生态领域中人们运用时滞模型来描述研究对象研究客观世界,现有模型大多都只有一个时滞,而相对于自然环境来说,多个时滞的模型虽然更加复
该选题来源于国家自然科学基金项目(编号:70771034):基于非一体化供应链的库存与配送协调模型与方法研究;广东省高校人文社科重点研究基地重大项目(编号: 08JDXM63003):基于期权合约的供应链风险管理方法研究。供应商管理库存(Vendor Managed Inventory,VMI)是一种供应商与下游企业之间的一种合作性策略,它能够有效整合库存管理职能,减轻长鞭效应给供应链带来的负面影
教育教学规律最根本的是学生学习规律。每个学生在大学期间都走过了一个轨迹,记载学生学习轨迹的就是各门课程的成绩单。所有学生学习轨迹的共性或共同规律性的现象即反映出学