【摘 要】
:
梯度估计是随机分析与几何分析中重要的研究课题.本文主要研究在紧致黎曼流形上,三种p-Laplace型非线性扩散方程的Li-Yau型梯度估计和Hamilton型梯度估计.作为其应用,进一步推导出相对应的Harnack不等式.具体研究内容为:(1)考虑紧致黎曼流形上的非线性反应扩散方程(NRDE)ut=Δpuγ+cuq,其中p>1,γ和q是满足一定条件的常数.我们首先引入p-Laplacian的线性化
论文部分内容阅读
梯度估计是随机分析与几何分析中重要的研究课题.本文主要研究在紧致黎曼流形上,三种p-Laplace型非线性扩散方程的Li-Yau型梯度估计和Hamilton型梯度估计.作为其应用,进一步推导出相对应的Harnack不等式.具体研究内容为:(1)考虑紧致黎曼流形上的非线性反应扩散方程(NRDE)ut=Δpuγ+cuq,其中p>1,γ和q是满足一定条件的常数.我们首先引入p-Laplacian的线性化算子及其抛物算子,并且构造辅助函数,再利用最大值原理和p-Bochner公式,对于NRDE的正解,在非负Ricci曲率条件下,证明了Li-Yau型梯度估计和Hamilton型梯度估计.作为应用,得到了梯度估计的Harnack不等式.(2)在曲率维数条件CD(0,N)下,利用加权p-Bochner公式和最大值原理,得到了加权非线性反应扩散方程在加权紧致黎曼流形上的梯度估计.(3)研究更具一般的非线性扩散方程(?)=ΔpF(u),利用以上类似的方法,当F(u)满足一定条件,证明了该方程在非负Ricci曲率条件下的Li-Yau型梯度估计和Hamilton型梯度估计.
其他文献
偏微分方程在数学领域中是一类非常重要的方程,本文研究的波方程属于其中一类,它主要描述生活中各种波的振动现象.例如,声波、水波和光波等等.因此,研究这一类方程具有很大的实际意义和应用价值.本文主要通过伽辽金方法、能量方法、常微分方程理论、构造李雅普诺夫泛函等方法和理论研究了带有时滞和动力学边界条件的波方程解的存在性以及稳定性.本文研究了两类带有时滞和动力学边界条件的波方程解的性质.第一章主要介绍了带
复杂网络是一门交叉性学科,是对实际系统的一种抽象刻画,将实际个体与个体之间的联系分别用点,点和点之间的连边来表示.随着网络理论的发展成熟,越来越多的学者对复杂网络理论研究产生浓厚的兴趣.现实中的许多传染病传播时实际上是通过个体之间的相互接触传播的,将个体看作为网络中的节点,个体之间的接触看作网络中节点间的连边,将传染病建模与复杂网络理论结合起来进行研究传染病的传播过程相较于传统的仓室模型更加接近于
有向图是图论的一个重要分支,有向图的哈密尔顿性是图论的基本问题,在现实生活中有着非常广泛的应用.半个多世纪以来,人们对哈密尔顿问题进行了深入的研究且取得了很多重要的成果.本文主要对强连通有向图和平衡二部有向图的哈密尔顿性进行研究.本文共分为四章.第一章介绍了本文涉及到的基本概念,并给出了所研究问题的研究现状.第二章研究了强连通有向图存在哈密尔顿圈的被控制对的度条件.1996年,Bang-Jense
在本文中,我们主要讨论了梯形区域上具有混合边界的一维波动方程的内点能观性和梯形区域上具有混合边界的薛定谔方程的边界能观性。本文分为三章。第一章,主要简述了一维波动方程能观性的一些问题,并给出了本文主要研究的问题。第二章,考虑在梯形区域Ω={(x,t)∈R2:0 ≤x≤ s(t),t≥ t0}s(t)=lt,t≥t0上的如下系统:(?)其中(g,f)∈HR1[0,lt0]×L2[0,lt0]是任意给
本文主要应用变分法和临界点理论研究了几类零质量Kirchhoff型方程非平凡解的存在性和多重性.主要内容如下:第一章主要介绍Kirchhoff型方程的研究背景与意义,以及研究现状.第二章主要给出本文将会用到的一些基本函数空间和性质,以及一些抽象临界点定理.第三章研究一类拟临界零质量Kirchhoff型方程基态解的存在性.在适当的条件下,利用变分法得到了该方程基态解的两个存在性结论.第四章研究了一类
竞赛图是一类重要的有向图,关于竞赛图已经有了许多结论.本文研究了竞赛图的一种推广图——准传递定向图,得到了准传递定向图在不同出度下Seymour点的个数;给出准传递定向图中点不交圈的个数及长度;计算得到准传递定向图上直径的界.本文共分为四章.第一章介绍有向图的基本概念,准传递定向图的定义、结构和相关结论以及本文内容的安排.第二章在准传递定向图上探究Seymour二次邻域猜想,主要得到:任何准传递定
美国生物学家Cohen在研究生态系统的食物网时提出了竞争图的概念,因其在理论和应用上都有重要的研究价值,从而竞争图成为图论研究中的热门话题.模糊有向图用来体现不清晰、不确定和界限模糊的事物之间的竞争关系,由于现实生活中竞争关系的复杂性和多样性,模糊竞争图吸引了大量科研工作者的关注.随后众多的模糊竞争图的概念及其应用被相继提出.本文将模糊竞争图中的直觉模糊竞争图、双极模糊竞争图、双极单值中智竞争图和
有向图在图论中占有很高的地位,而其中竞赛图是最重要的一类图.所以,竞赛图受到了大量科研工作者的关注.泛圈问题是图论研究的热点问题,它包括很多方面,比如顶点泛圈,弧泛圈,外弧泛圈点等.而其中弧泛圈问题又是一个重要的问题,越来越多的学者们也对弧泛圈问题进行了深入的研究.如果对每个2≤k≤|V(D)|-1,有向图D中的弧uv都有一条从v到u的长为k的路,则称弧uv是泛圈的.如果对每个2 ≤k≤|V(D)
列奥纳多·达·芬奇作为文艺复兴时期三杰之首,除了众所周知的绘画和雕塑之外,他在机械、音乐、文学、医学、解剖学等方面也有很大的成就,他留下了许多令我们惊叹不已的成就。达·芬奇是文艺复兴时期绘画技术与绘画理论的集大成者,尤其是他在绘画技法研究上更是推动了欧洲绘画的发展。透视法研究是达·芬奇绘画技法中最重要的一部分。达·芬奇将透视法在原有的线性透视法的基础上,通过观察和实验又提出了新的透视法概念,形成了
特征值估计和Harnack不等式是随机分析和几何分析中经典研究课题,近年来图上的几何与分析受到许多学者的关注与研究,其中如何在图上合理地定义曲率是一个首要问题,借助Bakry-Emery的平方场以及最优传输的思想,在这个方向上有了很大进展,本文在这样的一个背景下研究了 Laplace和p-Laplace算子的特征值估计以及相关Harnack不等式问题.具体进展如下:(1)在满足指数曲率维数CDE(