【摘 要】
:
图像超分辨率重建技术旨在通过一幅或多幅低分辨率图像重构出具有更高分辨率且携带更丰富更细节信息的超分图像。作为图像处理领域的重要研究方向,超分辨率重建技术在卫星遥感、安防监控和医学图像等领域都有着重要应用,一直是学术界的研究热点。近年来,随着深度学习在计算机视觉领域的迅猛发展,人们开始将深度网络运用到超分辨率重建技术上,通过深度网络来学习低分图像与高分图像在纹理结构与几何形态上的相关性,从而重构出与
论文部分内容阅读
图像超分辨率重建技术旨在通过一幅或多幅低分辨率图像重构出具有更高分辨率且携带更丰富更细节信息的超分图像。作为图像处理领域的重要研究方向,超分辨率重建技术在卫星遥感、安防监控和医学图像等领域都有着重要应用,一直是学术界的研究热点。近年来,随着深度学习在计算机视觉领域的迅猛发展,人们开始将深度网络运用到超分辨率重建技术上,通过深度网络来学习低分图像与高分图像在纹理结构与几何形态上的相关性,从而重构出与高分图像高度相似的超分结果。然而目前基于深度学习的图像超分辨率重建技术还存在特征利用不充分、纹理过于平滑等问题,面向不同的图像类型以及现实需求时,仍存在一定局限性。针对上述问题,本文主要的研究内容如下:第一,针对单帧图像的超分辨率重建,本文提出了一个基于残差密集结构的多尺度超分网络模型,以“逐步递增”的方式生成多个尺度的超分图像,通过密集连接实现特征的复用,同时引入局部与全局的跳跃式结构,优化了信息在网络上的流动。另外,本文将注意力机制应用到超分辨率重建技术中,让神经网络能够利用特征通道以及像素空间位置的依赖关系适应性地学习更具有区分性的特征,强化特征中高频细节信息的同时抑制流通在网络中的冗余信息。为了生成低分辨率图像中已经损失的高频细节信息,本文引入生成对抗网络思想,在已有的多尺度网络模型上加入对抗监督,从而生成更符合人眼感官、具有更真实纹理的超分图像。第二,在遥感领域,由于受到成像条件以及成像设备等因素的干扰,很难获得清晰度很高的图像。本文针对遥感图像的超分辨率重建,提出了基于区域级注意力机制的遥感图像超分网络模型,利用遥感图像在局部区域的自相似特性,将特征分割成多个区域块,分别在多个区域块上学习该区域内用于超分辨率重建的局部特征。最后,将各个区域级特征重组得到最终用于超分重建的全局特征。第三,随着人脸识别技术的发展与普及,如何对人脸数据进行隐私保护的问题也变得越来越突出。本文提出了一个新的问题,即如何在超分辨率重建任务中同时实现对人脸区域的隐私保护?针对这一问题,本文提出了一个面向人脸隐私保护的图像超分辨率模型框架。该框架通过人脸关注网络学习目标图像中的人脸语义信息,利用人脸语义概率图更新超分网络的中间特征,实现人脸区域与非人脸区域的清晰度分离,有效解决了图像超分辨率所带来的安全隐患。
其他文献
随着市场对汽车轻量化的需求日趋旺盛,第三代先进高强钢(AHSS)的开发和研究越来越受到重视,淬火配分(Quenching and Partitioning,Q&P)钢是最有应用前景之一的第三代先进高强钢。针对汽车用钢面临的复杂加工工艺,本文选用QP980轧制板材研究加工过程对材料组织以及力学性能的影响。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)以及电子背散射衍射(EBSD)等先进表征设备
在5G的时代背景下,在新一轮人工智能浪潮中,中国科学家开始展现人工智能领域的研发能力,占据了全球人工智能科研领域的一席之地。本文在5G大时代背景下,选择了一家在人工智能领域已经取得一定成绩的科技公司,研究开发科技公司技术员工胜任力模型,通过开发出适合科技公司的胜任力模型,发挥员工的潜在价值,助力科技公司的持久健康发展。本文采用了文献研究法和专题分析法相结合的研究方法,首先,从国内外对胜任力的研究现
当前,国内的量化投资市场正处于稳健的发展阶段,并且机器学习技术也在各个领域的运用上取得了相当大的成就,利用机器学习来进行量化交易逐渐成为了跨学科研究中的热点,这将使得量化投资已不再是早期简单的结合技术分析来构建投资组合策略,而是使用相关的算法进行证券池中的证券选取、证券价格变化预测、证券指数变化预测,通过模型的预测结果给予投资者在制定投资组合上一定的参考。本文主要利用循环神经网络建立了五个模型,对
目前,在以Docker为代表的容器化技术加持下,基于容器化技术的大规模应用的开发和部署已经成为主流。而Kubernetes在容器编排领域也成为了事实上的行业标准。然而,现有的Kubernetes自动伸缩策略中,存在一定不足:其HPA操作仅支持通过静态检测阈值触发的方式,且无法动态调整冷静期窗口以兼顾副本抖动抑制和自动伸缩灵活性;HPA和VPA不支持混用,无法在使用HPA的集群中进行Pod部署资源值
随着中国咖啡市场的日益发展,人们对于咖啡饮品的态度更加包容,需求也在逐年攀升。作为拥有悠久茶文化的国家,消费者正在慢慢改变消费习惯,逐渐接纳来自西方的提神饮品。以星巴克为代表的连锁咖啡品牌正在领导这个市场的消费趋势。而以Manner咖啡、瑞幸咖啡为代表的本土咖啡连锁品牌,正在打破这个行业的既有规则。通过不断创新和品牌联名,加速品牌成长,与星巴克分庭抗礼。T公司作为后来者,正面临最激励的竞争环境。T
伴随着经济的进一步发展,票据业务同样呈现出蓬勃发展之势,然而当下仍旧有很多票据诈骗事件出现。中国当下正在进行深入化的改革,N银行和相关银行均有关于汇票交易背景方面的了解度不高、相关审查不够严格、填写规范性不高等问题出现,由此便导致整个票据业务的秩序变得更加混乱,同时可展现出的是N银行当下在票据业务方面的整体风险在提升。以最大程度上辅助N银行的商业票汇业务发展为目的,即需对其予以总体上的把控。本文研
随着神经网络模型的发展,神经网络与传统序列标注模型的组合逐渐替代了传统的基于隐马尔科夫或条件随机场的序列标注模型,成为命名实体识别领域的主流方向。医学文本来自于医学专业书籍,是构建医学知识图谱的重要资料。而医学文本命名实体识别对医学知识图谱的构建起着重要的作用,基于此背景,本文针对医学领域的文本的命名实体识别展开研究。首先,本文构建了多粒度文本特征融合的医学文本命名实体识别模型。因为多粒度文本特征
由于人们的生活不规律、饮食不健康和吸烟等问题的影响,使得肺癌的致死率远高于其它癌症。随着影像技术的进步,医学图像分析在疾病早期筛查诊断的过程中起到非常关键的作用。现阶段大量的影像数据带给医生很大压力,使得诊断常伴随漏诊和误诊。近年来,随着人工智能应用于医学领域中,医学图像智能分析也迎来了新的突破。影像组学通过从数量庞大的医学图像中挖掘深层次的信息,并构建机器学习模型辅助医生做出决策。医学图像分割是
随着中国-东盟互联互通不断深入,对于中国和东盟国家的网络舆情研究尤为重要,现有对于中国-东盟民间舆情分析的研究相对较少,因此本文基于深度学习算法展开中国-东盟微博情感分析,研究具备较强的理论意义和实用价值。首先,采集并筛选了与“东盟”话题相关的微博评论数据作为本文的实验数据集。基于微博数据的特点和结合民间舆情观测库需要,提出CONV-SAWB和LST-SAWB情感分析算法。进行超参数调优实验和网络
随着科学技术的不断发展,网络虚拟世界和现实世界的关系不再是母子派生的关系,而越来越趋向于二元平衡的关系;虚拟世界的空间不断扩大、空间规则越来越完善,而且虚拟世界对现实世界的作用力度越来越大,在这样的背景下法律对网络空间规制越发重要,而寻衅滋事罪作为规范网络言行的重要罪名之一,一直受到学界的争议。本文第一部分通过对上海市两个较为典型案例的分析,引出网络型寻衅滋事罪在学界争议较大的几个认定问题,分别是