论文部分内容阅读
该文致力于非线性不连续集值微分方程的求解问题.利用广义的单调迭代法,分别系统完整地研究了集值椭圆型和抛物型微分方程问题的数值解法,其主要思想就是对非线性项在满足某种单调性条件下作单调的逼近,从而得到逼近于原问题解的一个序列.该方法不仅给出了解的存在性,而且提供了一个数值求解的方法,同时在迭代过程中,还给出了解的上界与下界.