【摘 要】
:
随着能源危机和温室效应的日益加剧,制备高能量密度储能器件和开发高效二氧化碳捕捉技术成为人们关注的重点。废弃中药渣排放量与日俱增,加重了生态系统负担的同时极大的浪费了生物质资源。为推进中药渣资源化利用,本文以植物药渣为碳源,探究具有可调控孔结构、高比表面积、优良导电性和化学稳定性的中药渣基多孔炭的合成及其结构与性能。本文主要研究内容和结论概括如下:(1)首先以商用超高电容活性炭材料作为标准参照,优化
【基金项目】
:
国家自然科学基金项目(21676107); 广东省自然科学基金(2020A1515010477)
论文部分内容阅读
随着能源危机和温室效应的日益加剧,制备高能量密度储能器件和开发高效二氧化碳捕捉技术成为人们关注的重点。废弃中药渣排放量与日俱增,加重了生态系统负担的同时极大的浪费了生物质资源。为推进中药渣资源化利用,本文以植物药渣为碳源,探究具有可调控孔结构、高比表面积、优良导电性和化学稳定性的中药渣基多孔炭的合成及其结构与性能。本文主要研究内容和结论概括如下:(1)首先以商用超高电容活性炭材料作为标准参照,优化电极制备工艺。在优选热解温度下高通量炭化20种根及根茎类、12种花叶类和6种果实种子类药渣,探究植物药渣基炭材料电化学性能与入药部位的关联性,优选出适用的前驱体。(2)以优选大宗根茎类中药材黄芪药渣为碳源,采用先预炭化后活化处理,探究活化碱炭比、活化温度、活化时长对黄芪基多孔炭孔结构、比表面积、石墨化程度和电化学性能的影响,确定黄芪基多孔炭制备的最佳活化条件(碱炭比为4,800℃活化60 min),同时探究孔结构和电化学性能间的关联性。此外,利用最佳活化条件成功制备出八种具有超高比表面积(>3000 m~2 g-1)的根茎类药渣基多孔炭,其中粉萆薢基多孔炭电极在三电极系统测试中比电容高达291.6 F g-1(1 A g-1电流密度)。(3)以三种优选根茎类药渣基多孔炭为研究重点,深入探究表面化学性质和孔径结构的差异对电化学性能的影响,构建对称型超级电容器并探究其在碱性体系、酸性体系和中性体系中的电化学表现。在碱性体系和酸性体系中,基于药渣基多孔炭的对称型超级电容器能量密度均大于8 Wh kg-1,优于商用YP-80F对称超电。在中性体系中,当功率密度为705 W kg-1时,基于丹参基多孔炭对称超电的能量密度为13.0 Wh kg-1。即使功率密度增加到16711 W kg-1,电池仍保持10.7 Wh kg-1的能量密度,明显优于商用YP-80F对称超电的能量密度(~3.0 Wh kg-1)。(4)对三种优选根茎类药渣基多孔炭进行二氧化碳和氮气等温吸附性能研究发现,粉萆薢基多孔炭在273 K的二氧化碳吸附量为4.88 mmol g-1,具有良好的CO2/N2选择性,在298 K时的吸附量为2.52 mmol g-1,吸附量表现最优。在甲基橙吸附测试中,当粉萆薢基多孔炭使用量为0.6 g L-1时,吸附容量可达498.4 mg g-1,去除效率达99.7%。实验结果表明优选根茎类药渣基多孔炭同样具有吸附应用前景。
其他文献
硅(Si)负极材料由于其出色的比容量(理论比容量为4200 m Ah/g)而受到人们的广泛关注,是新一代负极材料的热门选择。但是在充放电过程中巨大的体积变化容易使电极材料粉化脱落,并且不稳定的SEI膜也会在循环过程中不断消耗锂离子,造成容量的迅速衰减。将硅材料纳米化和表面包覆碳材料可限制硅在充放电过程中的体积膨胀,也能避免其与电解液直接接触,有效地提升电池的容量和循环稳定性。本文使用机械研磨法制备
多旋翼无人机因其具有垂直起降能力、机动性能好、环境适应性强等优点,在很多领域都得到了广泛应用,但其续航能力短的缺点限制了其进一步深化应用。自主降落技术,不仅可以有效地解决这个问题,还能提高多旋翼无人机的智能化水平以及扩大其应用范围。在实际应用中无人机往往处于较为复杂的环境,比如环境中存在障碍物,因此,多旋翼无人机在复杂环境下的自主降落技术研究十分重要。本文基于运动规划的方法对四旋翼无人机的自主降落
硫自养反硝化及厌氧氨氧化技术是高效且经济的新型废水脱氮技术。将硫代硫酸盐驱动的自养反硝化和厌氧氨氧化体系(SDDA)耦合克服了厌氧氨氧化过程中亚硝酸盐供应不足和硝酸盐积累的问题,该耦合体系为完全自养过程,不需要额外添加碳源。然而,在实际含氮废水中常含有一些复杂的有机质,会对自养生物脱氮性能产生影响,因此探究有机物对这种新型自养型脱氮技术的影响对实际工程应用具有重要意义。本文成功构建了SDDA耦合体
随着经济的发展和社会的进步,城市交通拥挤日趋全球化。如何提高出行效率,缓解交通拥堵,是智能交通系统中的关键问题。交通信号控制是城市交通管理的基本工具,交通流预测则提供了交通信号控制的基础。然而目前的交通信号控制与交通流预测的相关研究是相互分离的,无论是纯优化还是纯预测的研究,都不能达到理想的城市交通控制。为此,本论文进行了以下工作:首先,本文提出了一种基于交通流预测的城市交通信号控制系统框架,将交
相比传统热拌超薄磨耗层而言,冷拌超薄磨耗层具有节约资源、降低能耗、减少碳排放等优势,同时其受施工环境温度影响低、施工安全性高,是非常具有发展前景的路面材料之一。但是,由于冷拌超薄磨耗层所用材料属性、施工工艺受限,其自身强度、耐久性能较常规热拌超薄磨耗层低。目前常用冷拌超薄磨耗层有稀浆封层、微表处等技术,通常使用寿命仅有2~3年,且成型后的路面表面粗糙度大、平整度较差,耐久性低,导致推广受到限制。因
我国自古灾害高发,近年来城镇化高速发展,给城市安全带来了更加严峻的考验。为适应复杂的城市安全状况,我国通过颁布法律法规、整合部门职能、设立财政补助等措施,力图优化防灾减灾工作、提升城市安全水平。但整体而言,现阶段城市抵御灾害、防范风险的能力与需求间仍存在较大差距。推进防灾减灾工作有赖于空间设施的建设。应急避难场所系统优化,是防灾减灾空间设施建设的首要内容。应急避难场所主要依托城市公共空间建成,是城
降低环境污染和减少能源消耗已成为人类可持续发展的两大重要方向。钨青铜材料因其特殊的组成与结构,具有可见光透过率高,近红外光阻隔性能好等特点,成为建筑节能领域的研究热点之一。近年来人们还发现对该材料进行相应的离子掺杂,可以将其开发成具有全太阳光谱响应的光催化材料。因此钨青铜类材料在建筑节能与环境净化方面大有可为。研究开发具有较高的全太阳光谱光催化活性以及较强的近红外阻隔性能的钨青铜基复合材料具有重大
随着我国高等教育的不断发展,国家在高校行政改革方面不断进行着尝试和创新,构建“服务型”行政理念是主要的发展方向。高校行政办公建筑在当前行政服务化趋势下存在着诸多问题。首先,在我国高校行政服务化趋势下,行政理念发生了变化,因此设计理念也会有所改变;其次,受信息化发展的影响,高校行政系统的工作模式发生了巨大的变化。进而对高校行政办公建筑产生了诸多影响,如功能、空间、形式等。最后,传统的设计思路难以适应
动力电池单体热失控及其传播不仅导致电池包的故障甚至引发电动汽车火灾事故,严重威胁乘员生命及财产安全,已经成为科研和产品开发过程中的痛点。本文在深度调查和剖析新能源汽车动力电池热失控事故的基础上,结合科技计划项目,开展了电动汽车电池单体、模组和电池包热失控和热失控阻隔的基本原理、方法、结构影响参数等相关研究。研究目标是获得热失控及其传播规律,探讨发生单体热失控后的阻隔措施,争取火灾救援时间,降低火灾
冷凝换热广泛应用于许多工业工程领域,如发电厂凝汽器、制冷空调冷凝器等。固体表面上的冷凝换热存在膜状凝结和珠状凝结两种形式。应用于工业工程领域的冷凝换热表面多为亲水金属表面,在冷凝换热过程中具有较高的冷凝成核密度和较高冷凝液的导流速率,但是会形成膜状凝结,膜状凝结具有较大的传热热阻。与膜状凝结相比,珠状凝结是一种更为有效的冷凝换热方式,其凝液珠成核的直径较小,使冷凝表面有较多的区域外露,可以让蒸汽与