【摘 要】
:
生物细胞内的无膜细胞器如核仁、应激颗粒等一般是由相分离导致的凝聚体。凝聚体在细胞内相对独立,其内部分子浓度较高,可保障反应顺利进行且不受干扰。体外构建的凝聚体除了用于细胞器模拟,还可作为微反应器实现特定反应。凝聚体可通过p H、温度、无机盐浓度、聚合物浓度、光照等条件的调控实现解聚。磷脂作为细胞膜的主要组分,其形成的囊泡可作为人造细胞的模型。基于此,本论文以聚赖氨酸(Ply)/ATP凝聚体作为基础
论文部分内容阅读
生物细胞内的无膜细胞器如核仁、应激颗粒等一般是由相分离导致的凝聚体。凝聚体在细胞内相对独立,其内部分子浓度较高,可保障反应顺利进行且不受干扰。体外构建的凝聚体除了用于细胞器模拟,还可作为微反应器实现特定反应。凝聚体可通过p H、温度、无机盐浓度、聚合物浓度、光照等条件的调控实现解聚。磷脂作为细胞膜的主要组分,其形成的囊泡可作为人造细胞的模型。基于此,本论文以聚赖氨酸(Ply)/ATP凝聚体作为基础,通过乳液转移法将其包封进巨型磷脂囊泡(giant unilamellar vesicles,GUVs)中以构建限域微反应体系,采用MgCl2调控GUV内凝聚体的解聚而释放ATP,促进内部肌动蛋白的组装。首先将Ply和ATP以一定配比在室温下混合得到Ply/ATP凝聚体溶液,利用紫外可见光谱法测定,该溶液在550 nm处的透过率,通过荧光显微镜图像观察凝聚体液滴的形态并统计其粒径分布情况,确定了凝聚体在纯水溶液中形成的最佳浓度比为[Ply]:[ATP]=1:3,在p H=8.8的缓冲液中形成的最佳浓度比为[Ply]:[ATP]=4:1。探究了时间和盐溶液浓度对凝聚体稳定性的影响,发现纯水溶液的凝聚体在60 min~180 min内可保持相对稳定,180 min后随时间推移逐渐解聚,至24 h完全解聚。纯水溶液和缓冲液(p H=8.8)中使凝聚体完全解聚的MgCl2浓度分别为20 m M和5 m M。随后在生理环境下通过乳液转移法将Ply/ATP凝聚体液滴包封在GUVs内。通过优化了乳液法的工艺参数,确定其最优反应条件为涡旋时间60 s、ATP浓度为3m M、Ply浓度为12 m M,该条件下包封率可达70%。通过外加蜂毒素的方式在囊泡表面构建纳米微孔,并调节囊泡外MgCl2的浓度使其进入囊泡内部以调控囊泡内凝聚体的解聚。通过原位观察法研究反应过程。荧光显微镜图像表明30 min内可实现囊泡内部凝聚体的解聚。囊泡内部原有的肌动蛋白单体组装成肌动蛋白丝证明了ATP的成功释放。该反应体系实现了限域空间内凝聚体可控解聚释放ATP,表明其可模拟供能人造无膜细胞器。
其他文献
半导体光催化技术,是一种以半导体材料为催化剂,利用太阳光能,降解有机污染物,制备H2、CH4等清洁能源,用于解决日益严重的环境污染和能源危机问题的新兴技术。其中,半导体材料的吸光能力、载流子的分离效率,材料对反应物的吸附能力等因素直接决定着最终光催化材料性能的优劣。本文以Bi系纳米光催化材料β-Bi2O3为基础,构筑了基于β-Bi2O3的二元、三元异质结构,深入探讨了β-Bi2O3基多元异质结构的
多铁性材料因为具有两种或两种以上基本铁性共存而成为研究的热点,其中磁电多铁性材料由于在逻辑器件和信息存储器件中具有潜在的应用价值,而受到广大研究者的亲睐,因此制备具有铁电性和磁性的多铁性材料有极其重要的意义。BaTiO3是典型的铁电材料,掺杂过渡金属离子可在BaTiO3中引入磁性。但目前存在的主要问题是在引入磁性的同时,很难保证铁电性能不下降。针对上述问题,本论文通过掺杂Fe3+引入磁性,采用模晶
能源问题越来越严峻,氢气作为一种高效清洁的能源越来越受到人们的关注。生物制氢能耗低污染少且原料可再生,具备其它制氢方法无可比拟的优点。生物制氢目前存在的主要问题是技术不成熟,尚不能实现长时间产氢,对生物依赖性大。受天然细胞启发,课题利用细胞膜最为重要的性质——分隔实现高效的酶催化反应,选定蛋白质胶囊这种仿生细胞膜结构构筑微反应器。通过高效酶促反应构建厌氧微环境,激活小球藻体内氢化酶活性,实现微室内
甜菜色素是四大天然植物色素之一,极具安全性、丰富性和易提取性,拥有抗菌、抗炎、抗癌、抗氧化的生物活性,不仅能广泛应用于食品和化妆品领域,还可在治疗氧化应激、炎症和血脂异常相关的疾病中发挥重要作用。然而,甜菜色素稳定性较差,导致其保存时间短,也限制了应用范围。此外,因制备工艺差目前国内市售甜菜红素纯度低且多有浓烈的土腥味。因此,本研究通过优化提取及纯化工艺,提高甜菜红素提取率和纯度,并对其进行微胶囊
煤炭和石油经济的快速发展给人类带来了极大的便利,但是环境问题和能源危机伴随着煤炭石油经济的发展一同到来。而光催化制氢被人们认为是解决全球能源问题的有潜力的绿色途径。g-C3N4化合物因其具有利于产氢的能带结构,高理化稳定性等优势而引起了大众的关注。但是它也面临着导电率低、载流子复合率高、吸收范围窄等问题,这限制了光催化制氢反应活性的提升。本文以助催化剂和掺杂作为调节催化剂能带结构和减少电子-空穴复
石英玻璃拥有着优异的光学性能,机械性能,耐腐蚀性能,使其在医疗生物、航空航天、化工仪器仪表等领域都有着非常重要的应用。目前对于石英玻璃的制造技术有电熔法、气炼法、等离子体沉积法等,但这些方法均存在着难以成型复杂结构构件、能耗大、效率低等缺点。近几年有报道利用光固化技术来制造石英玻璃,其具有节能、环保、高效、高精度成型等优点,为制造石英玻璃打开了新的大门。目前对于光固化成型石英玻璃的难点在于光敏浆料
在物探领域,地震勘探法是勘探资源的最重要手段。其基本原理是通过人工激发弹性波并记录岩层界面的反射波与折射波,通过分析波形而认识地质构造。实际地震勘探应用中,常使用地震检波器拾取振动信号,磁电式地震检波器因其高信噪比、接口方便、结构稳定等特点被广泛使用。随着地质勘探的由浅表层向深层勘探的深入,需要提高检波器拾取低频信号的性能,磁电式地震检波器对低频信号的响应与其自身机械结构的参数相关,当从检波器机械
在众多的能源体系中,氢气无疑是清洁能源储存转换的理想载体。电解水制氢被认为是制取高纯氢气的有效方法;然而,其正极析氧过程较高的过电位严重影响了电解水效率的提高。目前,RuO2、IrO2等贵金属氧化物被认为是活性最高的析氧催化剂,但稀缺的资源限制了其在工业中的应用。基于此,本论文开发设计了由硫代乙酰胺(TAA)与NiCl2络合物TAA-Ni水解得到的高活性的非晶NiSx,并通过浸泡法将非晶NiSx负
石油、煤炭及天然气等化石燃料过度开发以及产物造成的环境污染一直是经济飞速发展过程中亟待解决的问题。为解决以上问题利用可见光光催化分解水产生氢气引起广泛研究兴趣。一方面可利用的太阳光以及水等自然资源取之不尽用之不竭,另一方面氢气作为一种理想二次能源具有热值大、产物无污染等优点被广泛应用于工业生产当中。然而利用半导体作为光催化剂在可见光下分解水产氢的过程中由于光激发产生的电子空穴对复合严重,相应的光催
人造胶体马达具有种类多样、易于控制和运动尺度大的优点,在精准医疗、环境修复等领域有着广阔的应用前景。在人造胶体马达的运动控制方法中,可见光控制的方式有着易于控制、环境友好度高的特点。本论文制备了两种基于可见光催化材料和铂金属的人造胶体马达,可在可见光的调节下实现快速的运动,并实现了可见光对人造胶体马达运动的有效调控。首先对二氧化硅微球模板应用熔融盐浸渍、高温煅烧、磁控溅射技术制备了氮化碳基Pt/g